Lagrange Multipliers (14.8 from secondary text #1)

Problem: Maximize or minimize a function \(f(x, y) \) over all \((x, y) \) in \(S \) where \(S \) is a curve in \(\mathbb{R}^2 \).

(Later we'll generalize to functions of more variables!)

Example:

\[
\begin{align*}
\text{Maximize/minimize} & \quad f(x, y) = x^2 + y^2 - 2x + 2y + 5 \\
\text{subject to} & \quad x^2 + y^2 = 4 \quad \text{A constraint}
\end{align*}
\]

\[\iff \] \(\begin{align*}
\text{max./min.} & \quad f(x, y) \\
\text{s.t.} & \quad (x, y) \in S = \{(x, y): x^2 + y^2 = 4\}
\end{align*} \]

\[\begin{align*}
\text{define: } & \quad g(x, y) = x^2 + y^2 - 4 \\
\text{max./min.} & \quad f(x, y) \\
\text{s.t.} & \quad g(x, y) = 0
\end{align*} \]

Observations & Remarks

1. At the abs. max. and abs. min. of \(f \) on the curve \(S \), the level curves of \(f \) are tangent to the constraint curve \(S \).

2. For any \((a, b) \),
 \[\nabla f(a, b) \perp \text{level curve of } f(x, y) = f(a, b) \]
 \[\nabla g(a, b) \perp \text{level curve of } g(x, y) = g(a, b) \]
Then if \((a, b)\) is an abs. max or abs. min of \(f(x, y)\) on
\(S = \{(x, y) : g(x, y) = 0\}\) (a level curve of \(g\) given by \(g(x, y) = 0\)),
we have:
\[\nabla f(a, b) \parallel \nabla g(a, b). \]
\[\Leftrightarrow \nabla f(a, b) = \lambda \cdot \nabla g(a, b), \ \lambda \in \mathbb{R}. \]

\[\Leftrightarrow \begin{align*}
 f_x(a, b) &= \lambda g_x(a, b) \\
 f_y(a, b) &= \lambda g_y(a, b)
\end{align*} \]
These observations justify the method of Lagrange multipliers:

Problem: max/min \(f(x, y) \)
subject to \(g(x, y) = C \)

Solution: Find \(x, y, \) and \(\lambda \) s.t.
\[
\begin{cases}
 \nabla f(x, y) = \lambda \nabla g(x, y) \\
 g(x, y) = C
\end{cases}
\]

\[
\begin{align*}
 f_x(x, y) &= \lambda g_x(x, y) \\
 f_y(x, y) &= \lambda g_y(x, y)
\end{align*} \] 3 eqns;
\(g(x, y) = C \) \[3 \text{ unknowns!} \]

Step 1: Solve the above system

Step 2: Among the solutions obtained in Step 1,
- largest corresponding function value \(
\rightarrow \text{abs. max}\)
- smallest corresponding function value \(
\rightarrow \text{abs. min}\)

on the constraint \(S \).