Office hrs: Th, 11-12 & 3-4

Directional Derivatives

Definition: Let \(\vec{u} = \langle u_1, u_2 \rangle \) be a unit vector. Then

\[
D_{\vec{u}} f(a, b) := \lim_{h \to 0} \frac{f(a + u_1 h, b + u_2 h) - f(a, b)}{h}
\]

is the directional derivative of \(f \) at \((a, b)\) in the direction of \(\vec{u} \), (provided the limit above exists).

Remarks:

1. \(\langle a + u_1 h, b + u_2 h \rangle = \langle a, b \rangle + h \vec{u} \)
2. **Special cases:** \(\vec{u} = \vec{i} = \langle 1, 0 \rangle \) above
 \[D_{\vec{i}} f(a, b) = f_x(a, b) \]
 Similarly, \[D_{\vec{j}} f(a, b) = f_y(a, b) \]
 where \(\vec{j} = \langle 0, 1 \rangle \).

Q: How do we find the rate of change in \(f \) at \((a, b)\) as \((a, b)\) changes in the direction of some unit vector \(\vec{u} \)?
How do we calculate $D_{\vec{u}} f$?

Remark: \vec{u} has to be a unit vector.

Formula: For $\vec{u} = \langle u_1, u_2 \rangle$,

$$D_{\vec{u}} f(a, b) = f_x(a, b) u_1 + f_y(a, b) u_2$$

Why is this formula working?

Let $L: \begin{cases} x = a + u_1 t \\ y = b + u_2 t \end{cases}$

$$D_{\vec{u}} f(a, b) = \lim_{h \to 0} \frac{f(a + hu_1, b + hu_2) - f(a, b)}{h}$$

Exercise: verify $\frac{d}{dt} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} \bigg|_{t=0}$.

$$D_{\vec{u}} f(a, b) = f_x(x(0), y(0)) \cdot x'(0) + f_y(x(0), y(0)) \cdot y'(0)$$

Noting: $x(0) = a$, $y(0) = b$

$x'(0) = u_1$, $y'(0) = u_2$

we get

$$D_{\vec{u}} f(a, b) = u_1 f_x(a, b) \cdot u_1 + f_y(a, b) u_2$$
Ex: Suppose that you stand on the graph of \(f(x,y) \) over the origin.

Given: slope of the ground at \(P \)
- in \(N \)-direction = \(-5 \)
- in \(W \)-direction = \(-1 \)

(a) Slope of the ground in the direction of \(\langle 1,2 \rangle \)?
(b) Is there a direction with slope = 0? Find it.
(c) Find the direction of the greatest slope? (steepest upward)

Sol: (a) Since \(\langle 1,2 \rangle \) is not a unit vector, set \(\vec{u} = \frac{\langle 1,2 \rangle}{\| \langle 1,2 \rangle \|} = \frac{1}{\sqrt{5}} \langle 1,2 \rangle \) = \(\langle \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \rangle \)

Then \(\nabla f(0,0) = f_x(0,0) \cdot \frac{1}{15} + f_y(0,0) \cdot \frac{2}{15} \)

But \(f_x(0,0) = -5 \) \(f_y(0,0) = -1 \)

\(\Rightarrow \nabla f(0,0) = -5 \cdot \frac{1}{15} - \frac{2}{15} = -\frac{7}{15} \)

(b) \(\vec{u} = \langle u_1, u_2 \rangle \Rightarrow \)

\(\nabla f(0,0) = -5u_1 - u_2 = 0 \)

\(\Rightarrow \begin{align*}
 u_2 &= -5u_1 \\
 u_1^2 + u_2^2 &= 1
\end{align*} \)

\(\Rightarrow \) makes \(\vec{u} \) a unit vector

\(u_1 = \frac{1}{\sqrt{26}}, u_2 = \frac{-5}{\sqrt{26}} \)

or \(u_1 = -\frac{1}{\sqrt{26}}, u_2 = \frac{5}{\sqrt{26}} \)

\(\vec{u} = \langle \frac{1}{\sqrt{26}}, \frac{-5}{\sqrt{26}} \rangle \) or \(\vec{u} = \langle -\frac{1}{\sqrt{26}}, \frac{5}{\sqrt{26}} \rangle \)
(c) **Goal:** maximize $D_{\mathbf{u}} f(0,0)$

over all unit vectors $\mathbf{u} = \langle u_1, u_2 \rangle$

which is:

$D_{\mathbf{u}} f(0,0) = -5 \cdot u_1 - u_2$

$= \langle -5, -1 \rangle \cdot \langle u_1, u_2 \rangle$

$= \| \langle -5, -1 \rangle \| \cdot \| \langle u_1, u_2 \rangle \| \cos \theta$

* θ: angle between $\langle -5, -1 \rangle$ and \mathbf{u}

* $\| \mathbf{u} \| = \| \langle u_1, u_2 \rangle \| = 1$

Then:

$D_{\mathbf{u}} f(0,0) = \sqrt{26} \cdot 1 \cdot \cos \theta$

* This is maximized when $\theta = 0$

 that is: $\mathbf{u} = \frac{\langle -5, -1 \rangle}{\| \langle -5, -1 \rangle \|} = \frac{1}{\sqrt{26}} \langle -5, -1 \rangle$

 is the direction of greatest slope

So, the direction of greatest slope is the same as $\langle f_x(0,0), f_y(0,0) \rangle = \langle -5, -1 \rangle$.