Distances in 3d

(1) Point-to-point
\[P_1 = (x_1, y_1, z_1), \quad P_2 = (x_2, y_2, z_2) \]
\[d(P_1, P_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2} \]

(2) Point-to-line
\[\text{direction vector} \]
\[P_0 : \text{(arbitrary) point on L} \]
\[d = \| P_0 P - \text{proj}_{\vec{n}} P_0 P \| \]
ALT: \[d = \| P_0 P \| \sin \theta \frac{\| \vec{n} \|}{\| \vec{u} \|} \]
\[= \frac{\| P_0 P \times \vec{v} \|}{\| \vec{v} \|} \]

(3) Point-to-plane
\[P_0 : \text{a point on the plane} \]
\[\vec{n} : \text{normal vector of the plane} \]
\[\text{dist} \ (P_1, E) = \| \text{proj}_{\vec{n}} \vec{P}_0 \vec{P} \| \]

(4) Line-to-line
\[\text{given: } L_1, L_2 \ (\text{turn this into an example}) \]
\[L_1 : \vec{r}_1(t) = \langle 0, 2, 0 \rangle + t \langle 0, 1, 2 \rangle \]
\[L_2 : \vec{r}_2(s) = \langle 0, 1, 1 \rangle + s \langle 1, -1, 3 \rangle \]
E: the plane that
- contains \(L_2 \rightarrow \overrightarrow{v}_2 \parallel E \)
- \(L_1 \parallel E \rightarrow \overrightarrow{v}_1 \parallel E \)

\[\Rightarrow \overrightarrow{n} = \overrightarrow{v}_1 \times \overrightarrow{v}_2 = \langle 0, 1, 2 \rangle \times \langle 1, -1, 2 \rangle = \langle 5, 2, -1 \rangle \]

Also: need a pt on \(E \rightarrow \) any pt on \(L_2 \) will do.
Say \(\overrightarrow{P} = (0, 2, 1) \)

\[E: 5x + 2y - z = 1 \]

\[\text{dist}(L_1, L_2) = \text{dist}(P_*, Q_*) = \text{dist}(\text{any pt on } L_1, E) \]

\[\text{use formula from (3)} \]
\[= \frac{1}{\sqrt{130}} \]

Quadric Surfaces & cylinders (10.1)

Cyber Cylinders: these are surfaces given by equations with one (or more) of \(x, y, z \) missing.
- \(x^2 + y^2 = 1 \) (\(z \) can be anything)
- \(x = \sin z \) (\(y \) is missing, so it can take any value)
- \(z + x = 1 \) (\(y \) is missing)

(Example 3.16 - p. 555)

Ex: \(x^2 + y^2 = 1 \)
\(S = \{ (x, y, z) : x^2 + y^2 = 1, 2 \in \mathbb{R} \} \)
For ex., \((1, 0, 0) \in S \)
\((1, 0, 100) \in S \)
In general, we use the word cylinder for any surface obtained:
- pick a curve C on a plane
- extend parallel lines passing through C

Quadric Surfaces

Surfaces described by
$$Ax^2 + By^2 + Cz^2 + Dx y + E_{x z} + F_{y z} + G_{x t} H_{y t} I_{z t} + J = 0$$

Includes:
- planes ($A = B = ... = F = 0$)
- spheres ($A = B = C > 0, J < 0; ...$)
- parabolic cylinders, ... more!

Special focus in the book
- $A x^2 + B y^2 + z^2 = t$ \[t > 0\]
- $z = A x^2 + B y^2$ \[A, B > 0\]
- $z^2 = A x^2 + B y^2$ \[A, B > 0\]

DO NOT MEMORIZE EQNS, NAMES, GRAPHS!
Ex: Sketch $z = y^2 - x^2$ (S)

(a) Sketch the intersection of S with $z = \text{const. planes}$ (i.e. "z-traces" or "level curves" of S)

(b) Sketch the y-traces (i.e., intersection of S with $y = \text{const. planes}$)