Last time.

Ex. 1 \(\mathbf{r}_1(t) = \langle 1, 2, 3 \rangle + t \langle 1, 1, 1 \rangle \)
\(\mathbf{r}_2(s) = \langle 2, 1, 1 \rangle + s \langle 2, 1, 2 \rangle \)

Intersection? \(\mathbf{r}_1(t) = \mathbf{r}_2(s) \)

1) \(1 + t = 2 + 2s \) \(\Rightarrow 3 - 2s = 1 = 0 \)
2) \(2 + t = 1 + 2s \)
3) \(3 + t = 1 + 2s \)

\(\Rightarrow \) lines are parallel. as \(\mathbf{v}_1 \parallel \mathbf{v}_2 \)

Ex. 2 \(\mathbf{r}_1(t) = \langle 1, 2, 3 \rangle + t \langle 1, 1, 1 \rangle \)
\(\mathbf{r}_2(s) = \langle -1, 0, 1 \rangle + s \langle 3, 3, 3 \rangle \)

Intersection?

1) \(1 + t = -1 + 3s \) \(\Rightarrow t = 3s - 2 \) holds for all \(t \)
2) \(2 + t = 3s \)
3) \(3 + t = 1 + 3s \) \(\Rightarrow t = 3s - 2 \)

\(\Rightarrow \mathbf{r}_1 \) \& \(\mathbf{r}_2 \) are identical lines.

(3) \(\mathbf{r}_1(t) = \langle 1, 2, 3 \rangle + t \langle 1, 1, 1 \rangle \)
\(\mathbf{r}_2(s) = \langle 4, -1, 2 \rangle + s \langle -1, 2, 2 \rangle \)

Intersection? Set \(\mathbf{r}_1(t) = \mathbf{r}_2(s) \)

1) \(1 + t = 4 - 5s \) \(\Rightarrow t = 1, s = 2 \)
2) \(2 + t = -1 + 2s \)
3) \(3 + t = 2 + 2s \)

\(\Rightarrow \) they intersect at one point

Point of intersection

\[\mathbf{r}_1(1) = \langle 1, 2, 3 \rangle + \langle 1, 1, 1 \rangle = \langle 2, 3, 4 \rangle \]

\(P = (2, 3, 4) \) is the pt of intersection.

Exercise: give an example of two skew lines.
Planes (10.6)

\[\mathbf{n} = \langle a, b, c \rangle \]

\[\mathbf{PQ} \perp \mathbf{n} \]

\[\mathbf{PA} = \langle x-x_0, y-y_0, z-z_0 \rangle \]

5. \[\mathbf{PA} \cdot \mathbf{n} = 0 \quad \text{as} \quad \mathbf{PA} \perp \mathbf{n} \]

6. \[a(x-x_0) + b(y-y_0) + c(z-z_0) = 0 \]

Equation of the plane \(E \) (standard form)

OR: \[ax + by + cz = d \quad (d = ax_0 + by_0 + cz_0) \]

general form

Ex: plane through \(P = (1, 2, 3) \) with \(\mathbf{n} = \langle 2, -3, 4 \rangle \)

\[2(x-1) - 3(y-2) + 4(z-3) = 0 \]

SOL: \[2(x-1) - 3(y-2) + 4(z-3) = 0 \]

OR \[2x - 3y + 4z = 8 \]

Remarks:

1. One can define a plane \(E \) by means of:

 i) a point on \(E \) and a normal vector \(\mathbf{n} \perp E \)

 ii) Three points \(P_1, P_2, P_3 \) then on \(E \)

 that are not collinear

 \[\mathbf{n} = \mathbf{P_1P_2} \times \mathbf{P_1P_3} \]

 (iii) Two intersecting lines on \(E \)

2. Eqs of planes (like lines) are not unique: \(x + y + z = 1 \) & \(2x + 2y + 4z = 2 \) → Same
Repeat:

\[x + y + z = 1 \quad \text{and} \quad 2x + 2y + 2z = 2 \]

are the same plane.

3. Read off the normal vector easily:

\[x + 2y + 3z = 5 \Rightarrow \vec{n_1} = \langle 1, 2, 3 \rangle \]
\[2x - 3y + 5z = 55 \Rightarrow \vec{n_2} = \langle 2, -3, 5 \rangle \]
\[7y + 3z - x = 1 \Rightarrow \vec{n_3} = \langle -1, 7, 3 \rangle \]

4. Two planes \(E_1 \) and \(E_2 \) are either (i) identical, (ii) parallel, or (iii) intersect at one line.

(a) If \(\vec{n_1} \parallel \vec{n_2} \), then (i) or (ii).

otherwise, (iii).

5. Angle btw \(E_1 \) \& \(E_2 \)

\[= \text{angle btw } \vec{n_1} \text{ and } \vec{n_2} \]

Ex: \(E_1: 3x + 2y + z = 1 \)
\(E_2: x + y + 0.2 = 0 \)

(a) Find the intersection of \(E_1 \) \& \(E_2 \)

(b) \(\psi \) \& angle btw \(E_1 \) \& \(E_2 \)

Sol: (a) \(3x + 2y + z = 1 \)
\(x + y = 0 \)

Note: if the planes are not parallel, then there will be one free variable, and the other two can be written in terms of that free variable.

Say \(x \) is the free variable here. Then set \(\overline{x = t} \), \(t \in \mathbb{R} \).

1. \(3t + 2y + z = 1 \) \quad Solve \(\psi \) for \(y \& z \).
\(t + y = 0 \)
\(\Rightarrow y = -t \)

2. \(\Rightarrow \) into 1: \(3t + 2(-t) + z = 1 \)
\(\Rightarrow z = 1 - t \)

So, the line of intersection:

\(x = 0 + t \)
\(y = 0 - t \)
\(z = 1 - t \)
\(\Rightarrow \langle x, y, z \rangle = \langle 0, 0, 1 \rangle \pm t \langle 1, -1, 1 \rangle \)
(2) angle θ?

$\vec{n}_1 = \langle 3, 2, 17 \rangle$; $\vec{n}_2 = \langle 1, 1, 7 \rangle$

$\cos \theta = \frac{\vec{n}_1 \cdot \vec{n}_2}{||\vec{n}_1|| \cdot ||\vec{n}_2||} = \frac{5}{\sqrt{14} \cdot \sqrt{12}} = \frac{5}{128}$

$\theta = \arccos \left(\frac{5}{\sqrt{128}} \right)$.

Distances in 3d