3. \[|e^{i\theta}| = |\cos \theta + i \sin \theta| = \sqrt{\cos^2 \theta + \sin^2 \theta} = 1. \]

For all \(\theta \) real!

\[e^{i \theta} \]

Unit circle

Ex: Find all real solutions of

\[e^{i(\theta + \theta^2)} = 4. \]

Sol: No such \(\theta \)!

4. \[e^{i\theta_1} \cdot e^{i\theta_2} = e^{i(\theta_1 + \theta_2)} \]

Then:

\[z_1 = r_1 \cdot e^{i\theta_1} \quad (r_1 = |z_1|) \]

\[z_2 = r_2 \cdot e^{i\theta_2} \]

\[z_1 \cdot z_2 = r_1 \cdot r_2 \cdot e^{i(\theta_1 + \theta_2)} \]

\[z_1 / z_2 = r_1 / r_2 \cdot e^{i(\theta_1 - \theta_2)} \]

Multiplication/division is very easy in this form!

Last time:

\[e^{i\theta} = \cos \theta + i \sin \theta \]

For any \(z = a + ib \), we have

\[z = r \cdot e^{i\theta} \quad \text{where} \quad r = |z| \]

\[\theta = \text{Arg}(z). \]
Ex: \(z_1 = 1 + i = \sqrt{2} \cdot e^{i\pi/4} \)

\(z_2 = 1 - i = \sqrt{2} \cdot e^{-i\pi/4} \)

\(z_1 \cdot z_2 = \sqrt{2} \cdot \sqrt{2} \cdot e^{i(\pi/4 - \pi/4)} = 2 \)

\(\frac{z_1}{z_2} = \frac{\sqrt{2}e^{i\pi/4}}{\sqrt{2}e^{-i\pi/4}} = e^{i\pi/2} = i \)

\(z_1^5 = (\sqrt{2})^5 \cdot e^{5i\pi/4} \)

Roots: Find \(z \) s.t. \(z^3 = 1 \).

(i.e., find all roots of \(P(z) = z^3 - 1 \).)

Clearly, one root is \(z_1 = 1 \).

Using \(z_1 = 1 \): \(z^3 - 1 = (z-1)(z^2 + z + 1) \)

Now, go back to \(z^3 = 1 \)

Suppose \(z = r e^{i\theta} \rightarrow \)

\(r^3 e^{i3\theta} = 1 \), \(r \in \mathbb{R} \)

\(\theta \in \mathbb{R} \)

\(\Rightarrow r^3 e^{i3\theta} = 1 \), \(e^{i(0 + 2k\pi)} = 1 \)
Then: \[r = 1 \]
\[
3\theta = 0 \Rightarrow \theta = 0
\]
\[
3\theta = 2\pi \Rightarrow \theta = \frac{2\pi}{3}
\]
\[
3\theta = 4\pi \Rightarrow \theta = \frac{4\pi}{3}
\]

Conclusion: The roots of \(z^3 = 1 \) are:
\[
z_1 = 1 \cdot e^{i0} = 1
\]
\[
z_2 = 1 \cdot e^{i\frac{2\pi}{3}} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i
\]
\[
z_3 = 1 \cdot e^{i\frac{4\pi}{3}} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i
\]

Then:
\[
z^3 - 1 = (z - 1)(z - (-\frac{1}{2} + \frac{\sqrt{3}}{2}i))(z - (-\frac{1}{2} - \frac{\sqrt{3}}{2}i))
\]

Ex: \(z^5 = -3 \). Find all the roots.

Sol: \(r = 3 \cdot e^{i\frac{\pi}{2}} = -3 \)

Then: \(r = 3^{\frac{1}{5}} \)

\[
5\theta = \pi \Rightarrow \theta_1 = \frac{\pi}{5}
\]
\[
5\theta = 3\pi \Rightarrow \theta_2 = \frac{3\pi}{5}
\]
\[
5\theta = 5\pi \Rightarrow \theta_3 = \frac{5\pi}{5} = \pi
\]
\[
5\theta = 7\pi \Rightarrow \theta_4 = \frac{7\pi}{5}
\]
\[
5\theta = 9\pi \Rightarrow \theta_5 = \frac{9\pi}{5}
\]

Stop after 5 consequent ones

\[
5\theta = 11\pi \Rightarrow \theta_6 = \frac{11\pi}{5} = \frac{2\pi}{5}
\]
Then, e.g., \(z_1 = 3^{1/5} (\cos(\pi/5) + i \sin(\pi/5)) \)

Eigenvalues / Eigenvectors

Suppose we have an \(m \times m \) matrix \(A \) (square!) and we want to compute \(A^n x \) for any given \(x \) and any (possibly large) \(n \)!

Ex: \[A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \]

First, observe that \(\text{rank}(A) = 2 \), so the homog. system \[A x = \vec{0} \]

We know how to find it:

\[x_n = s \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \]

That is: \(A x_n = \vec{0} \) for any \(s \)!

Let's pick \(s = 1 \) and set \(v_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \). Then

\[A v_1 = \vec{0} \]

With this \(v_1 \), we have

\[A^2 v_1 = A(A v_1) = A \vec{0} = \vec{0} \]

\[A^n v_1 = \vec{0} \quad \text{and have a formal for } A^n v_1! \]
So, $v_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ is special in that multiplying v_1 by A is like multiplying v_1 by the scalar 0.

Another special vector:

$v_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ (I'm just giving this to you - will learn how to find it soon)

$A v_2 = \begin{bmatrix} 4 \\ 6 \\ 4 \\ 4 \end{bmatrix}$

That is:

$A v_2 = v_2 \iff$ multiplying by A is like multiplying by the scalar 1

Then $A^n v_2 = v_2$

Finally:

$v_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$

$A v_3 = \begin{bmatrix} 2 \\ 0 \\ 2 \\ 2 \end{bmatrix} = 2 v_3$

That is: $A v_3 = 2 v_3$, so multiplying v_3 by A is like multiplying v_3 by the scalar 2!
Note that \(\{v_1, v_2, v_3\} \) are linearly independent in \(\mathbb{R}^3 \), so \(\{v_1, v_2, v_3\} \) is a basis for \(\mathbb{R}^3 \).

That is:

\[
\forall x \in \mathbb{R}^3, \text{ there exist } c_1, c_2, c_3 \in \mathbb{R} \text{ s.t. } x = c_1 v_1 + c_2 v_2 + c_3 v_3
\]

Then

\[
A x = A (c_1 v_1 + c_2 v_2 + c_3 v_3)
= c_1 A v_1 + c_2 A v_2 + c_3 A v_3
\]

\[
= c_1 \lambda_1 v_1 + c_2 \lambda_2 v_2 + c_3 \lambda_3 v_3
\]

\[
A^2 x = c_2 \lambda_2 v_2 + 2 c_3 \lambda_3 v_3
= c_2 v_2 + 2^2 c_3 v_3
\]

So, if we know (like in this example) the "special vectors" \(v_1, v_2, v_3 \) s.t.

\[
A v_1 = \lambda_1 v_1
A v_2 = \lambda_2 v_2
A v_3 = \lambda_3 v_3
\]

such that \(\{v_1, v_2, v_3\} \) is a basis for \(\mathbb{R}^3 \), then

\[
A^n x = c_1 \lambda_1^n v_1 + c_2 \lambda_2^n v_2 + c_3 \lambda_3^n v_3
\]

where \(x = c_1 v_1 + c_2 v_2 + c_3 v_3 \).

Same remark above generalizes to an \(m \times m \) matrix \(A \) — in that case we have \(\lambda_1, \lambda_2, \ldots, \lambda_m \) (in eigenvalues) possibly complex.