Suggested problems or various things to think about

Problem 1. Consider the symmetric group S_3 and let k be an arbitrary field of characteristic different from 2.

1. What are the 1-dimensional representations of S_3? (Show that there is only the trivial representation and the character corresponding to the signature that we will call the sign character).

2. Consider the natural 3-dimensional representation V_3 of S_3 over k. What is the multiplicity of the trivial character of S_3 in V_3? Does V_3 contain the sign character as a subrepresentation? Show that V_3 contains a subrepresentation of dimension 2.

 a) If k has characteristic different from 3, show that V_3 is semisimple and give its decomposition into irreducibles.

 b) If k has characteristic 3, give a filtration of V_3 as a representation of S_3 of the form $0 \subset V_1 \subset V_2 \subset V_3$ where V_i has dimension i. Describe the quotient representations V_{i+1}/V_i. Show that V_2 is indecomposable and that V_3 is indecomposable.

What happens over a field of characteristic 2?

Problem 2. Let G be a finite group. Consider its trivial representation k_{triv}: it is one dimensional and it corresponds to the morphism of groups $G \to k^\times$, $g \mapsto 1$. It is also often denoted by 1_G. We suppose that the cardinality of G is invertible in the field k. Consider the element

$$e_1 := \frac{1}{|G|} \sum_{g \in G} g \in k[G].$$

1. Show that it is a central idempotent of $k[G]$ that is to say that $e_1^2 = e_1$ and that e_1 commutes with any element of $k[G]$. Deduce that the trivial representation is a direct summand of the regular representation of G over k.

2. Consider an exact sequence of k-representations of G:

$$0 \to V \to W \to k_{\text{triv}} \to 0$$

This means that there are morphisms of representations $\iota : V \to W$ and $p : W \to k_{\text{triv}}$ such that ι is injective, p is surjective, and $\text{Im}(\iota) = \text{Ker}(p)$. Show that the exact sequence splits that is to say that there is $s : k_{\text{triv}} \to W$ a morphism of representations such that $\iota \circ s = \text{id}_{k_{\text{triv}}}$. *(This means that k_{triv} is a projective representation of G).* Check that it implies that $W \simeq V \oplus k_{\text{triv}}$ as representations of G.

3. Show that if k_{triv} is a quotient of a k-representation W, then W contains a copy of k_{triv} as a direct summand. *This also means that k_{triv} is a projective representation of G.*

To be continued.

Problem 3. Let U be the subgroup of upper triangular matrices in $\text{GL}_n(F_p)$. What is the cardinality of U? Consider the natural representation of U on the vector space F_p^n. Is it decomposable? Is the trivial representation of U over F_p projective?

Problem 4. Let G be a group and k a field.
Problem 5. Let G be a finite group and H a subgroup of G. Let k be a field. Consider
the induced representation
\[\text{ind}^G_H(\text{triv}_H) \cong k[G/H] \]
where triv_H denotes the trivial representation of H. A basis for $k[G/H]$ is given by the
characteristic functions 1_{gH} where g ranges over a system of representatives of the left
cosets G/H.

1. Show that the algebra of endomorphisms $\mathcal{H} := \text{End}_G(k[G/H])$ identifies naturally
with the algebra $k[H\setminus G/H]$ of all functions on $H\setminus G/H$ with values in k (which
can also be seen as functions on G that are constant of the double cosets modulo H). The product
of φ and ψ in $k[H\setminus G/H]$ is given by
\[\varphi \ast \psi(x) = \sum_{g \in G/H} \psi(g)\varphi(g^{-1}x). \]

2. Show that there is a natural functor
\[\mathcal{F} : \text{Rep}_k(G) \rightarrow \text{Mod}(\mathcal{H}), \quad V \mapsto V^H \]
where $\text{Mod}(\mathcal{H})$ is the category of right \mathcal{H}-modules.

3. Give a condition under which you can prove that \mathcal{F} is exact. Show that it is not
exact in general.

4. Show that the functor $- \otimes_k k[G/H]$ is left adjoint to \mathcal{F}.

5. Let $\text{Rep}_k^H(G)$ denote the full subcategory of $\text{Rep}_k(G)$ of the representations
generated by their H-fixed vectors. Show that the restriction of \mathcal{F} to $\text{Rep}_k^H(G)$ is
faithful.

6. Suppose that $G = \text{GL}_2(\mathbb{F}_q)$ and $H = B$ is the upper Borel subgroup.
 (a) Show that \mathcal{H} is two dimensional as a vector space with basis 1_B and 1_{B+B}.
 (b) Compute $1_{B+B} \ast 1_{B+B}$.
 (c) Show that \mathcal{H} is semisimple and describe its simple modules.
(d) Show that the functor above matches up irreducible representations in $\text{Rep}_K^B(G)$ and simple modules of \mathcal{H}.

Problem 6. Let $G = \text{GL}_n(F_q)$ and B be the upper Borel subgroup with Levi decomposition $B = TU$. Let \overline{U} denote the lower unipotent subgroup.

(1) Consider the symmetric group \mathfrak{S}_n and let S denote the set of all transpositions of the form $s_i := (i, i + 1)$ for $i = 1, \ldots, n - 1$. We say that (\mathfrak{S}_n, S) is a Coxeter system. In particular, it means that any element of \mathfrak{S}_n can be written as a product of elements in S. The length of a word $s_{i_1} \ldots s_{i_m}$ for $m \geq 0$ and $1 \leq i_1, \ldots, i_n \leq n - 1$, is the integer m. For $w \in \mathfrak{S}_n$, if $w = s_{i_1} \ldots s_{i_m}$ we say that it is a decomposition of length m of w. We denote by $\ell(w)$ the minimal length of a decomposition of w. A decomposition of w of length $\ell(w)$ is called reduced. The length of $1 \in \mathfrak{S}_n$ is by definition zero.

(a) For $w, w' \in \mathfrak{S}_n$ show that $\ell(ww') \leq \ell(w) + \ell(w')$. Give examples where the inequality is strict (resp. where it is an equality).

(b) If $w = s_{i_1} \ldots s_{i_\ell(w)}$ is a reduced decomposition for w and $1 \leq j < \ell(w)$, show that $s_{i_1} \ldots s_{i_j}$ has length j and $s_{j+1} \ldots s_{i_\ell(w)}$ has length $\ell(w) - j$.

(c) For $s \in S$ and $w \in \mathfrak{S}_n$, show that $\ell(w) - 1 \leq \ell(ws) \leq \ell(w) + 1$.

(2) We consider the set of pairs of integers

$$
\Phi := \{(i, j), i \neq j, 1 \leq i, j \leq n\}.
$$

It is the union of Φ^+ and Φ^- where

$$
\Phi^+ = \{(i, j) \in \Phi, i < j\} \text{ and } \Phi^- = \{(i, j) \in \Phi, i > j\}.
$$

The set Φ is the set of roots of G and Φ^+ (resp. Φ^-) is the set of the positive (resp. negative) roots.

To $\alpha = (i, j) \in \Phi$ we attach the subgroup $U_\alpha := 1 + F_q e_{i, j}$ of G where $e_{i, j}$ is the $n \times n$ matrix with zero coefficients except for the coefficient (i, j) which is equal to 1.

(a) What is the cardinality of Φ, of Φ^+?

(b) Show that to $s \in S$, one can attach naturally an element α_s in Φ^+. We denote by Π the set of all $\{\alpha_s, s \in S\}$. Check that every element of Φ^+ is a sum of distinct elements of Π. Is any sum of distinct elements in Π an element in Φ^+?

(c) Check that U is the product of all U_α for $\alpha \in \Phi^+$ (this is the decomposition of U into root subgroups).

(d) Check that there is a natural action of \mathfrak{S}_n on Φ which is compatible with the action by conjugation of \mathfrak{S}_n on the subgroups U_α for $\alpha \in \Phi$.

(e) Let $s \in S$. What is the set $\{\alpha \in \Phi^+, \ s.\alpha \in \Phi^-\}$?

(f) Check on some examples (e.g. when $n = 2$ and $n = 3$) that for $w \in \mathfrak{S}_n$, we have

$$
\ell(w) = |\{\alpha \in \Phi^+, \ w.\alpha \in \Phi^-\}| = |\{\alpha \in \Phi^+, \ wU_\alpha w^{-1} \subset \overline{U}\}|.
$$

(g) Show that for any $s \in S$ and $w \in \mathfrak{S}_n$, we have $\ell(ws) = \begin{cases}
\ell(w) + 1 & \text{if } w.\alpha_s \in \Phi^+ \\
\ell(w) - 1 & \text{if } w.\alpha_s \in \Phi^-
\end{cases}$

(3) Show that for $s \in S$ we have $BsB = \bigcup_{w \in U_\alpha} usB$.

(4) Show that for any $s \in S$ and $w \in \mathfrak{S}_n$ such that $\ell(ws) = \ell(w) + \ell(s)$ we have

$$
BwBsB = BsBwB.
$$
(5) Show that for any $w, w' \in \mathfrak{S}_n$ such that $\ell(ww') = \ell(w) + \ell(w')$ we have
$$BwBw'B = Bww'B.$$

(6) What is $BsBsB$?

(7) Let k be an arbitrary field. Show that the Hecke algebra \mathcal{H} of G with respect to B
has k-basis the set of all characteristic functions $\tau_w := 1_{BwB}$ for $w \in \mathfrak{S}_n$ subject
the relations
$$\tau_w \star \tau_{w'} = \tau_{ww'} \quad \text{if} \ \ell(ww') = \ell(w) + \ell(w'),$$
$$\tau_s^2 = \tau_s \star \tau_s = (q - 1)\tau_s + q \quad \text{for any} \ s \in S.$$

(a) What are the one dimensional modules of \mathcal{H}?

(b) Suppose that k has characteristic p, show that any simple \mathcal{H} module is one
dimensional. Is \mathcal{H} semisimple? Justify your answer.

(c) Suppose that $n = 3$. Give the decomposition of \mathcal{H} into PIMs and identify the
projective covers of the simple modules.

Problem 7. Let A be an abelian group. Decompose the unit of $\mathbb{C}[A]$ as a sum of primitive
orthogonal idempotents.

Problem 8. Let A be a k-algebra. A left A-module M is flat if the functor $- \otimes_A M$ from
right A-modules to k-vectorspaces is exact.

(1) Show that if M is flat then for any right ideal I of A, the map $I \otimes_A M \to M$ is
injective. We admit that this condition is sufficient for the flatness of M (but you
can think/lookup the proof).

(2) Show that any direct summand of a flat module is flat.

(3) Show that a projective module is flat.

Problem 9. Let G be a finite group and k a field. Show that $k[G]$ is an injective $k[G]$-
module by proving that $\text{Hom}_G(-, k[G])$ is exact. (Note that we can also deduce this from
the fact that $k[G]$ is a symmetric algebra...)

Problem 10. Let A, B be unitary rings and $B \to A$ a morphism of rings making A a left
and right A-module. We consider the induction functor $A \otimes_B -$ from left B-modules to
left A-modules.

(1) Show that $A \otimes_B -$ preserves the projectivity of the modules. Does it take a pro-
tective resolution of the B-module M to a projective resolution of the A-module
$A \otimes_B M$?

(2) Suppose $A = \mathbb{Z}/2\mathbb{Z}$ and $B = \mathbb{Z}$.

(a) Compute $\text{Ext}_A^i(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z})$ for $i \geq 0$.

(b) Describe a non split extension of $\mathbb{Z}/2\mathbb{Z}$ by itself as an abelian group.

(c) Compute $\text{Ext}_A^i(A \otimes_B \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z})$ for $i \geq 0$. What do you notice when you
compare with (a)?

(3) Suppose that A is a free right B-module. Show that $A \otimes_B -$ is exact. What can
you say about $\text{Ext}_A^i(A \otimes_B -, -)$?

(4) Same question when A is a projective right B-module.

(5) Same question when A is a flat right B-module.

(6) Suppose that G is a group and H a subgroup of G. Let k be a field. What can you
say about $\text{Ext}_k^i(k[G] \otimes_k[H] -, -)$?
Problem 11. Let G be a finite group and J a subgroup of G. Let k be a field. Let $i \geq 0$.

1. Show that for a $k|J|$-module N and a $k[G]$-module M, we have
 \[\text{Ext}^i_{k|J}(M, \text{ind}_G^G(N)) = \text{Ext}^i_{k[J]}(M|J, N). \]
2. Show that
 \[H^i(J, k) = \text{Ext}^i_{k[G]}(k, \text{ind}_G^G(k)). \]

Problem 12. Let q be a power of a prime number p and $G = \text{GL}_n(F_q)$. Let U be the subgroup of all upper unipotent matrices and B the Borel subgroup containing U with Levi decomposition $B = TU$. Let k be a field and $\chi : T \to k^\times$ a morphism of groups. We may consider it a morphism of groups $B \to k^\times$ trivial on U. For any $w \in S_n$ let $U_w := U \cap w U w^{-1}$.

1. Using Mackey decomposition, show that
 \[\text{ind}_B^G(\chi)|U \cong \bigoplus_{w \in S_n} \text{ind}_{U_w}^U(k). \]
2. Show that
 \[H^1(U, \text{ind}_B^G(\chi)) = \bigoplus_{w \in S_n} \text{Hom}(U_w, k). \]
3. What is $H^1(U, \text{ind}_B^G(\chi))$ is k has characteristic different from p?
4. Suppose that k has characteristic p and $n = 2$. What is the dimension of $H^1(U, \text{ind}_B^G(\chi))$ over k?
5. Suppose that $q = p$ and $n = 2$. How many isomorphism classes of extensions of k by $\text{ind}_B^G(\chi)$ as a representation of U are there? Describe them explicitly.