Let K be a field. Recall the Euclidean division of polynomials in $K[X]$: given $A, B \in K[X]$ with $B \neq 0$, there is a unique pair $(Q, R) \in K[X]^2$ satisfying
\[A = BQ + R \]
and $\deg(R) < \deg(B)$ (recall that the zero polynomial has degree $-\infty$ so it is possible that R is zero).

Problem 1. (1) Let R be a subring of \mathbb{C} containing \mathbb{Q}. Check that R is also a \mathbb{Q}-vector space. (In fact R is called a \mathbb{Q}-algebra).

(2) Suppose that R as above is finite dimensional over \mathbb{Q}. Show that R is a field. (You may consider the multiplication map $m_\alpha : R \rightarrow R, x \mapsto \alpha x$ for $\alpha \in R$). (This should remind you of the proof of "a finite integral domain is a field").

(3) Let $\alpha \in \mathbb{C}$ such that there exists a nonzero polynomial $P \in \mathbb{Q}[X]$ satisfying $P(\alpha) = 0$. Show that $\mathbb{Q}[\alpha]$ defined in Problem set 2 as the image of the morphism of rings $\mathbb{Q}[X] \rightarrow \mathbb{C}, P \mapsto P(\alpha)$ is a field.

(4) Show that the kernel of the map $\mathbb{Q}[X] \rightarrow \mathbb{Q}[\alpha], P \mapsto P(\alpha)$ is generated by an irreducible polynomial P_α in $\mathbb{Q}[X]$. Compare the degree of P_α and the dimension of $\mathbb{Q}[\alpha]$ as a vector space.

(5) Let $\alpha = \sqrt{2} - \sqrt{2}$. What is P_α? (You may apply Eisenstein’s criterion from Problem set 2).

What is the inverse of α in $\mathbb{Q}[\alpha]$?

What is the inverse of $1 + \alpha + \alpha^2$ in $\mathbb{Q}[\alpha]$? (You may use the Euclidean algorithm between P_α and $1 + X + X^2$).

Problem 2. Show that there exists an irreducible polynomial of degree 3 in $\mathbb{F}_2[X]$. Give an example of field of cardinality 8. (The ideas in the previous problem could be helpful...)

If $A, B \in \mathbb{Z}[X]$ we may write the division of A by B in $\mathbb{Q}[X]$ but the quotient and the remainder do not necessarily lie in $\mathbb{Z}[X]$ (try with examples). However, we admit the following (it is not too difficult but a bit tedious to prove) : if $A, B \in \mathbb{Z}[X]$ and B is a monic polynomial, then the quotient Q and the remainder R of the Euclidean division of A by B in $\mathbb{Q}[X]$ actually lie in $\mathbb{Z}[X]$.

Problem 3. (1) Let $P \in K[X]$ and $z \in K$. What is the remainder of the Euclidean division of P by $X - z$?

(2) Let $A \in \mathbb{R}[X]$, and $B \in \mathbb{R}[X]$ a monic irreductible polynomial of degree 2. What is the remainder of the Euclidean division of A by B?

(3) Write the division of $X^3 + 2X^2 + 5X + 1$ by $X^2 + 4X + 1$ in $\mathbb{Q}[X]$ (and check that it actually happens in $\mathbb{Z}[X]$).

(4) What is the Euclidean division of $X^2 + X + 1$ by $2X + 1$ in $\mathbb{Q}[X]$. Does it happen in $\mathbb{Z}[X]$?
Problem 4. Why do you know without any computation that the following system has a solution?
\[
\begin{aligned}
x &\equiv 4 \mod 18 \\
x &\equiv 8 \mod 17
\end{aligned}
\]

Problem 5. Let \((x_1, x_2, \ldots, x_n), (y_1, y_2, \ldots, y_n) \in \mathbb{R}^n\) and suppose that all \(x_i\)'s are pairwise distinct. Why is there a unique polynomial \(P \in \mathbb{R}[X]\) of degree < \(n\) such that \(P(x_i) = y_i\) for all \(i\)?

Problem 6. (bonus)
Problem 33 of Section 7.4 except for question (d).