Problem 1. For R a subring of \mathbb{C} and $z \in \mathbb{C}$ we denote by $R[z]$ the image of the morphism of rings
\[R[X] \rightarrow \mathbb{C} \]
\[P \mapsto P(z) \]
where $R[X]$ is the ring of polynomials with coefficients in R.

1. This is a small formality... Show that $R[z]$ is the intersection of all the subrings of \mathbb{C} containing R and z. Let A be the intersection of all subring of \mathbb{C} containing R and z (check quickly for yourself that it is a subring of \mathbb{C} containing R and z). The map above is a morphism of rings and therefore its image $R[z]$ is a subring of \mathbb{C} containing R and z. So $R[z]$ contains A. Conversely, every polynomial expression in z with coefficients in R lies in any subring of \mathbb{C} containing R and z, so it lies in A : this means that $R[z]$ is contained in A. We have proved that $A = R[z]$.

2. Review this Find a quotient ring of $\mathbb{Q}[X]$ which is isomorphic to

(a) For $\mathbb{Q}[i\sqrt{7}]$: the map
\[\phi : \mathbb{Q}[X] \rightarrow \mathbb{Q}[i\sqrt{7}] \]
\[P \mapsto P(i\sqrt{7}) \]
is a surjective morphism of rings. Its kernel is
\[\ker(\phi) = \{ P \in \mathbb{Q}[X], \ P(i\sqrt{7}) = 0 \}. \]
It contains $X^2 + 7$ so it also contains the ideal $(X^2 + 7)$ of $\mathbb{Q}[X]$ generated by $X^2 + 7$. Conversely let P in the kernel of the map. We have $P(i\sqrt{7}) = 0$ and using the complex conjugation, we also have $P(-i\sqrt{7}) = 0$. Write the Euclidean division of P by $X^2 + 7$ in $\mathbb{Q}[X]$: there is $Q,R \in \mathbb{Q}[X]$ such that
\[P = (X^2 + 7)Q + R \]
where R is either zero or a polynomial with degree 0 or 1. Evaluating at $\pm i\sqrt{7}$ we obtain $R(\pm i\sqrt{7}) = 0$ from which we easily deduce that $R = 0$ (do it!). Therefore, $X^2 + 7$ divides P in $\mathbb{Q}[X]$ namely P lies in $(X^2 + 7)$. We have proved that $\ker(\phi) = (X^2 + 7)$. Therefore
\[\mathbb{Q}[X]/(X^2 + 7) \cong \mathbb{Q}[i\sqrt{7}]. \]

(b) $\mathbb{Q}[\frac{1 + \sqrt{5}}{2}]$. : the map
\[\phi : \mathbb{Q}[X] \rightarrow \mathbb{Q}[\frac{1 + \sqrt{5}}{2}] \]
\[P \mapsto P(\frac{1 + \sqrt{5}}{2}) \]
is a surjective morphism of rings. Its kernel is
\[\ker(\phi) = \{ P \in \mathbb{Q}[X], \ P(\frac{1 + \sqrt{5}}{2}) = 0 \}. \]

It contains \(X^2 - X - 1 \) so it also contains the ideal \((X^2 - X - 1)\) of \(\mathbb{Q}[X] \)
generated by \(X^2 - X - 1 \). Let \(P \) in the kernel of the map. We have \(P(\frac{1 + \sqrt{5}}{2}) = 0 \).

Write the Euclidean division of \(P \) by \(X^2 - X - 1 \) in \(\mathbb{Q}[X] \) : there is \(Q, R \in \mathbb{Q}[X] \)
such that
\[P = (X^2 - X - 1)Q + R \]
where \(R \) is either zero or a polynomial with degree 0 or 1 which we write in the form \(aX + b \) with \(a, b \in \mathbb{Q} \).

Because \(\sqrt{5} \) is not rational (you can prove it), we easily see that \(a = b = 0 \) so \(R = 0 \). Therefore, \(X^2 - X - 1 \) divides \(P \) in \(\mathbb{Q}[X] \)
namely \(P \) lies in \(\langle X^2 - X - 1 \rangle \). We have proved that \(\ker(\phi) = \langle X^2 - X - 1 \rangle \).

Therefore
\[\mathbb{Q}[X]/\langle X^2 - X - 1 \rangle \cong \mathbb{Q}[\frac{1 + \sqrt{5}}{2}]. \]

(3) Let \(A = \mathbb{Z}[\sqrt{10}] \) and \(K = \mathbb{Q}[\sqrt{10}] \).

(a) Describe the elements of \(A \) and the elements of \(K \).

Let \(z := \sqrt{10} \). By definition, the elements of \(A \) (resp. \(K \)) are of the form \(P(z) \) where \(P \in \mathbb{Z}[X] \) (resp. \(P \in \mathbb{Q}[X] \)). But \(z^2 = 10 \) so \(z^n \) lies in \(\mathbb{Z} \) or in \(\mathbb{Z} \mathbb{Z} \) for any \(n \geq 1 \). Therefore :
\[A = \{ a + zb, \ a, b \in \mathbb{Z} \} \quad \text{and} \quad K = \{ a + zb, \ a, b \in \mathbb{Q} \}. \]

(b) For an element \(x \in K \) consider the multiplication \(m_x : K \to K \). Check that it
is a \(\mathbb{Q} \)-linear map on the finite dimensional \(\mathbb{Q} \)-vector space \(K \). Denote by \(T(x) \)
its trace and by \(N(x) \) its determinant. What happens when \(x \in A \) ?

First note that \(K \) is a \(\mathbb{Q} \)-vector space (as a \(\mathbb{Q} \)-subspace of \(\mathbb{R} \) for example).

Then, it makes sense to ask whether \(m_x \) is linear, and indeed it it clear
that for any \(u, v \in K \) and \(\lambda, \mu \in \mathbb{Q} \) we have
\[m_x(\lambda u + \mu v) = x(\lambda u + \mu v) = \lambda xu + \mu xv = \lambda m_x(u) + \mu m_x(v). \]

Using the previous question, \(K \) is finite dimensional over \(\mathbb{Q} \) so it makes sense
to talk about the determinant and the trace of \(x \). A basis of \(K \) is given by
the elements 1 and \(\sqrt{10} \) (indeed, using the previous question this is a generating
set, and it is easy to see that it is a basis because \(\sqrt{10} \) is not a rational number).

Given \(x = a + \sqrt{10}b \in K \), the matrix of \(m_x \) in that basis is
\[\begin{pmatrix} a & 10b \\ b & a \end{pmatrix} \]

so \(N(a + \sqrt{10}b) = a^2 - 10b^2 \) and \(T(a + \sqrt{10}b) = 2a \). If \(x \in A \) then \(N(x), T(x) \in \mathbb{Z} \).

(c) Show that 2 is irreducible in \(A \) namely that if \(2 = xy \) with \(x, y \in A \) then \(x \) or
\(y \) is a unit of \(A \).

For \(u, v \in K \) we have \(m_{uv} = m_u \circ m_v \) therefore \(N(uv) = N(u)N(v) \). From
this we deduce that if \(x \) is a unit in \(A \) then \(N(x) = \pm 1 \). Conversely, for
\(x = a + \sqrt{10} \in A \), if \(N(x) = \pm 1 \) then \(\frac{a - \sqrt{10}}{N(x)} \in A \). Since
\[\frac{a - \sqrt{10}}{N(x)} \times x = 1 \]
it implies that \(x \) is a unit of \(A \). Therefore, an element \(x \) of \(A \) is a unit if and only if \(N(x) = \pm 1 \).

If \(2 = xy \) with \(x, y \in A \) and none of \(x \) or \(y \) is a unit, we have \(N(2) = N(x)N(y) \) namely \(4 = N(x)N(y) \). Therefore \(N(x) = \pm 2 \). Compute the squares in \(\mathbb{Z}/10\mathbb{Z} \) and find a contradiction...

(d) Show that \((2)\) is not a prime ideal of \(A \).

Use \(2 \times 5 = 10 = (\sqrt{10})^2 \) ...

Problem 2. First recall that given a commutative ring \(A \) with identity and \(I \) an ideal of \(A \), the ideals of the quotient ring \(A/I \) are the \(J/I \) where \(J \) is an ideal of \(A \) containing \(I \). Let \(J \) be such an ideal. The reduction map

\[
\phi : A \to A/J
\]

is a morphism of rings, the kernel of which contains \(I \). Therefore it gives a surjective noninjective morphism of rings

\[
\phi : A/I \longrightarrow A/J.
\]

The kernel of \(\bar{\phi} \) is the ideal \(J/I \) or \(A/I \), therefore, applying the isomorphism theorem, we get an isomorphism of rings

\[
\bar{\phi} : (A/I)/(J/I) \cong A/J.
\]

So, \((A/I)/(J/I)\) is an integral domain if and only if \(A/J \) is an integral domain. This proves that among the ideals \(J/I \) of \(A/I \) (where \(J \) is an ideal of \(A \) containing \(I \)), the prime ideals are the ones of the form \(J/I \) where \(J \) is a prime ideal of \(A \) containing \(I \).

For the next question, recall that for any field \(K \), the ring \(K[X] \) is a PID. If \(P \) is an irreducible polynomial in \(K[X] \), let \(I \) be an ideal of \(K[X] \) containing \((P)\). There exists \(Q \in K[X] \) such that \(I = (Q) \). We have

\[
(P) \subset (Q) \subset K[X]
\]

and therefore \(Q \) divides \(P \). But \(P \) is irreducible so \(Q = uP \) where \(u \in K^\times \) and \((P) = (Q) \), or \(Q = u \) where \(u \in K^\times \) and \((P) = K[X] \). We have proved that in \(K[X] \) an irreducible polynomial generates a maximal ideal. So in a PID

" \(P \) irreducible \(\Rightarrow \) \((P) \) maximal \(\Rightarrow \) \((P) \) prime"

Recall that \(P \) is called prime when \((P) \) is prime. Recall also that the implication "prime \(\Rightarrow \) irreducible" is always true. So in a PID

" \(P \) irreducible \(\iff \) \((P) \) maximal \(\iff \) \((P) \) prime"

(In a UFD, we proved that "prime \(\iff \) irreducible"

(a) \(A = \mathbb{C}[X] \).

Prime ideals : \((X - \alpha) \) for \(\alpha \in \mathbb{C} \) are prime.

(b) \(A = \mathbb{R}[X]/(X^2 + X + 1) \), The only ideal of \(\mathbb{R}[X] \) containing \((X^2 + X + 1)\) strictly is \(\mathbb{R}[X] \) because \(X^2 + X + 1 \) is irreducible. So the only prime ideal of \(A \) is \(\{0\} \).
(c) \(A = \mathbb{R}[X]/(X^3 - 6X^2 + 11X - 6) \).
We have \((X^3 - 6X^2 + 11X - 6) = (X - 1)(X - 2)(X - 3) \) so the prime ideals of \(A \) are \((X - 1)/(X^3 - 6X^2 + 11X - 6), (X - 2)/(X^3 - 6X^2 + 11X - 6), (X - 3)/(X^3 - 6X^2 + 11X - 6) \).

(d) \(A = \mathbb{R}[X]/(X^4 - 1) \). Since \(X^4 - 1 = (X^2 + 1)(X + 1)(X - 1) \) the prime ideals of \(A \) are \((X^2 + 1)/(X^4 - 1), (X + 1)/(X^4 - 1), (X - 1)/(X^4 - 1) \).

Problem 3. Let \(k \) be a field with characteristic different from 2 and \(G = \{e, g\} \) the group with two elements. We consider the group ring \(A = k[G] \) (see Section 7.2).

1. What are the ideals of \(A \)?

Consider the map \(k[X] \rightarrow A, P(X) \mapsto P(g) \). It is a morphism of rings. Its kernel contains \(X^2 - 1 \) since \(g^2 = e \). It does not contain \(X - 1 \) or \(X + 1 \) therefore the kernel is exactly the ideal generated by \(X^2 - 1 \). This proves that \(A = k[X]/(X^2 - 1) \) which makes the rest of the problem very straightforward. For example, the proper ideals of \(A \) correspond to the proper ideals of \(k[X]/(X^2 - 1) \) namely \((X - 1)/(X^2 - 1) \) or \((X + 1)/(X^2 - 1) \) (note that \(k \) has characteristic different from 2 therefore \(X - 1 \not\equiv X + 1 \)). Concretely in \(A \) these ideals are \((g - e)A \) and \((g + e)A \).

To find these ideals without the isomorphism: notice that \(A \) is a 2-dimensional vector space over \(k \). A proper ideal of \(A \) is in particular a sub vector space with dimension 1 so it has the form \(k(\alpha e + \beta g) \) for \(\alpha, \beta \in k \). But not all such vector spaces are ideals. If \(k(\alpha e + \beta g) \) is an ideal \(I \) then \(\alpha g + \beta e = g(\alpha e + \beta g) \in k(\alpha e + \beta g) \) which means that the matrix \(\begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix} \) has determinant 1 namely \(\alpha^2 = \beta^2 \), i.e. \(\alpha = \pm \beta \).

So \(I \) has to be \(k(e + g) \) or \(k(e - g) \). And indeed, one checks that these are indeed ideals of \(A \).

2. Is \(A \) principal? No because it is not an integral domain \((g + e)(g - e) = 0 \).

3. What are the nilpotent elements of \(A \)? We look for \(P \in k[X] \) such that its image \(\overline{P} \) in \(k[X]/(X^2 - 1) \) is nilpotent namely there is \(n \geq 1 \) such that \(P^n = 0 \). But \(k \) is a field so \(P(1)^n = 0 \) is equivalent to \(P(1) = 0 \). Likewise, we obtain \(P(-1) = 0 \). This means that \(P \) is a multiple of \(X^2 + 1 \) (write the Euclidean division of \(P \) by \(X^2 + 1 \) if you like and analyze the remainder...). Note that it matters here that \(-1 \not\equiv 1 \) again... Therefore we have \(\overline{P} = 0 \) and there is no nilpotent element in \(k[X]/(X^2 - 1) \) and no nilpotent element in \(A \).

Now if we want to work directly in \(A \): since \(k \) has characteristic different from 2 we can invert 2 in \(k \) and consider

\[f_1 := \frac{1}{2}(e + g) \quad f_2 := \frac{1}{2}(e - g). \]

Notice that these are orthogonal idempotent elements of \(A \) and that \(e = f_1 + f_2 \).

This means that

\[A = f_1 A \times f_2 A \]

as a ring, where \(f_i A \) is a ring with identity element \(f_i \). Therefore, we are reduced to looking for the nilpotent elements in each \(f_i A \). But it is easy to see that \(f_i A = k f_i \) and since \(f_i \) is not nilpotent, there is no nilpotent element in \(f_i A \) and therefore in \(A \).

Note: by the Chinese Remainder Theorem, we have

\[k[X]/(X^2 - 1) \cong k[X]/(X - 1) \times k[X]/(X + 1). \]

Compare this with the decomposition of \(A \) above! Namely, what element in \(k[X]/(X^2 - 1) \) (and then in \(A \)) corresponds to \((1, 0)\), to \((0, 1)\)?
(4) What is the intersection of all prime ideals of A?

Problem 4. Let A be an integral domain and $a, b \in A$ such that $(a) = (b)$. What can you say about a and b?

Problem 5. We admit the following result known as *Eisenstein Criterion*. Let $f \in \mathbb{Q}[X]$ a monic polynomial with degree $m \geq 1$

$$f = X^m + a_{m-1}X^{n-1} + \cdots + a_1X + a_0.$$

Suppose that

(i) $a_0, \ldots, a_{m-1} \in \mathbb{Z}$,

(ii) there is a prime number p that divides a_0, \ldots, a_{m-1} and

(iii) p^2 does not divide a_0.

Then f is irreducible over \mathbb{Q} namely if $f = gh$ with $g, h \in \mathbb{Q}[X]$ then g or h is a nonzero constant polynomial.

Let p be a prime number and ϵ a primitive root of 1 in \mathbb{C}. Let $A = \mathbb{Z}[\epsilon]$ be the subring of A generated by ϵ, namely the intersection of all subrings of \mathbb{C} containing ϵ. Note that \mathbb{Z} is a subring of A.

(1) Show that the polynomial $\Phi_p = 1 + X + \ldots + X^{p-1}$ is irreducible over \mathbb{Q}. This is a classic question. See wikipedia, Eisenstein Criterion, Cyclotomic polynomials...

Note that $\Phi_p = \frac{X^p - 1}{X - 1}$. Let

$$P = \Phi_p(X + 1) = \frac{(X + 1)^p - 1}{X} = \sum_{k=1}^{p} \binom{p}{k} X^{k-1}. $$

It is a monic polynomial. For $k \in \{1, \ldots, p\}$ we have $k \binom{p}{k} = p \binom{p-1}{k-1}$ so p divides $k \binom{p}{k}$. But when $k \neq p$ it is prime to k therefore p divides $\binom{p}{k}$ for $k \in \{2, \ldots, p-1\}$. The constant term of P is $\binom{p}{1}$. It is not divisible by p^2. By Eisenstein criterion, P is irreducible over \mathbb{Q} and therefore Φ_p is irreducible over \mathbb{Q}.

(2) Show that the map

$$\mathbb{Z}^{p-1} \rightarrow A$$

$$(x_0, \ldots, x_{p-2}) \mapsto \sum_{i=0}^{p-2} x_i \epsilon^i$$

is an isomorphism of additive groups. First we want to check that it is surjective.

It is enough to prove for any $n \geq 0$ that ϵ^n is in the image of the map. If $n \leq p-2$ it is clear. For $n = p-1$, it is also clear because $\epsilon^p = 1$ and $\epsilon \neq 1$ so $\Phi_p(\epsilon) = 0$ therefore $\epsilon^{p-1} = -1 - \epsilon - \cdots - \epsilon^{p-2}$. Suppose that ϵ^n is in the image and consider ϵ^{n+1}. We know that we can find $x_0, \ldots, x_{p-2} \in \mathbb{Z}$ such that

$$x_0 + x_1 \epsilon + \ldots + x_{p-2} \epsilon^{p-2} = \epsilon^n.$$

Therefore

$$\epsilon^{n+1} = x_0 \epsilon + x_1 \epsilon^2 + \ldots + x_{p-2} \epsilon^{p-1} = x_0 \epsilon + x_1 \epsilon^2 + \ldots + x_{p-3} \epsilon^{p-2} + x_{p-2}(-1 - \epsilon - \cdots - \epsilon^{p-2}).$$
So we see that \(\epsilon^{n+1} \) lies in the image of the map. We have proved by induction on \(n \) that \(\epsilon^n \) is in the image of the map for any \(n \geq 0 \). This proves that the map is surjective.

For the injectivity, notice that the ideal \(\{ P \in \mathbb{Q}[X], P(\epsilon) = 0 \} \) of \(\mathbb{Q}[X] \) contains \(\Phi_p \). It is principal so it is of the form \(\Pi \mathbb{Q}[X] \) for some \(\Pi \in \mathbb{Q}[X] \) dividing \(\Phi_p \).

Since \(\Phi_p \) is irreducible, \(\Pi \mathbb{Q}[X] = \Phi_p \mathbb{Q}[X] \) or \(\Pi \mathbb{Q}[X] = \mathbb{Q}[X] \). The latter is not true because there exist polynomials in \(\mathbb{Q}[X] \) which do not take value zero at \(\epsilon \).

Therefore
\[
\{ P \in \mathbb{Q}[X], P(\epsilon) = 0 \} = \Phi_p \mathbb{Q}[X].
\]

Write the Euclidean division :
\[
\Phi_p = (X - 1)(X^{p-2} + 2X^{p-3} + \cdots + p - 2X + p - 1) + p
\]

It gives
\[
p = (1 - \epsilon)(\epsilon^{p-2} + 2\epsilon^{p-3} + \cdots + (p - 2)\epsilon + p - 1)
\]
and this equality happens in \(A \). This shows that \(p \in (1 - \epsilon)A \) so \(p\mathbb{Z} \subset (1 - \epsilon)A \).

Since \((1 - \epsilon)A \cap \mathbb{Z} \) is an ideal of \(\mathbb{Z} \), it is enough to show that \((1 - \epsilon)A \cap \mathbb{Z} \neq \mathbb{Z} \)
since \(p\mathbb{Z} \) is maximal. If \((1 - \epsilon)A \cap \mathbb{Z} \) was equal to \(\mathbb{Z} \) it would mean in particular that \(1 \) lies in this intersection and in particular in \((1 - \epsilon)A \). So \((1 - \epsilon) \) would be invertible in \(A \). We know that it is invertible in \(\mathbb{C} \) and in fact we even know what is its inverse : it is
\[
\frac{\epsilon^{p-2} + 2\epsilon^{p-3} + \cdots + (p - 2)\epsilon + p - 1}{p}
\]

By Question (2), this is not an element in \(A \) ! To prove it very carefully, notice that if it was an element in \(A \) we could find (by surjectivity of the map in Question (1)) \((x_0, \ldots, x_{p-2}) \in \mathbb{Z}^{p-1}\)
\[
x_0 + x_1\epsilon + \ldots + x_{p-2}\epsilon^{p-2} = \frac{\epsilon^{p-2} + 2\epsilon^{p-3} + \cdots + (p - 2)\epsilon + p - 1}{p}
\]

But then
\[
\epsilon^{p-2}(1 - px_{p-2}) + (2 - px_{p-3})\epsilon^{p-3} + \cdots + ((p - 2) - px_1)\epsilon + p - 1 - px_0 = 0
\]
and by injectivity in \(A \), we have \(1 = px_{p-2} \). Contradiction.

The morphism of rings \(\mathbb{Z} \rightarrow A/(1 - \epsilon)A \) is surjective because any element \(a \) in \(A \) can be written in the form \(a = x_0 + x_1\epsilon + \ldots + x_{p-2}\epsilon^{p-2} \) for \((x_0, \ldots, x_{p-2}) \in \mathbb{Z}^{p-1}\).

Therefore
\[
a \in x_0 + x_1 + \ldots x_{p-2} + (1 - \epsilon)A.
\]
The kernel of this map is \((1 - \epsilon)A \cap \mathbb{Z} = p\mathbb{Z} \). This proves that
\[
A/(1 - \epsilon)A \simeq \mathbb{Z}/p\mathbb{Z}.
\]

(4) What can we say about the ideal \((1 - \epsilon)A ?\) It is a maximal ideal of \(A \).