Matrix algebra, Math 221

Worksheet 4

Given a \(m \times n \) matrix \(A \), and the corresponding linear transformation
\[
T_A : \mathbb{R}^n \to \mathbb{R}^m
\]
we recall:

- the Rank of \(A \) is the dimension of the Range of \(T_A \), i.e the dimension of the vector space spanned by the columns of \(A \).
- the Null space of \(A \), also called the Kernel of \(T_A \), is the set of \(x \in \mathbb{R}^n \) such that \(A x = 0 \).

We admit the following formula (which you have to know):

\[
n = \text{Rank}(A) + \dim(\text{Null}(A))
\]

Problem 1. Let
\[
A = \begin{pmatrix}
2 & 3 & 1 \\
0 & 2 & 2 \\
1 & 2 & 1
\end{pmatrix}.
\]

(1) Find a basis of the Null space of \(A \).
(2) What is the rank of \(A \)?
(3) Show that the Range of \(T_A \) is the plane with equation \(2x + y - 4z = 0 \) (this is harder than an exam question).
(4) Find a basis of the Range of \(T_A \).

Problem 2. Let \(A \) be a square matrix. Show that \(A \) is invertible \(\iff \text{Null}(A) = \{0\} \iff \text{Rank}(A) = n \)

Problem 3.
(1) Show that the matrix \(A = \begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
1 & 2 & 6
\end{pmatrix} \) is invertible.
(2) Compute its determinant.