At the end of week 3, on top of what you reviewed for Midterm 1, you should be able to do the following:

- **Decide if you want to prove a statement by direct proof or proof by contrapositive.** We did several examples in class among which:
 1. For $a \in \mathbb{Z}$, if a^2 is even then a is even.
 2. For $(x, y) \in \mathbb{Z}^2$, if 5 does not divide xy, then 5 does not divide x and 5 does not divide y.
 3. For $x \in \mathbb{R}$, if $x^3 - x > 0$ then $x > -1$. (We did a direct and a contrapositive proof. This is Chapter 5 Problem 6).
 4. For $(a, b, c, d) \in \mathbb{Z}$ and $n \in \mathbb{N}$ with $n \geq 1$, if $a \equiv b \mod n$ and $c \equiv d \mod n$ then $ac \equiv bd \mod n$.
 5. Check out the problems covered in the text of Chapter 4 and 5. You will recognize several results we proved in class. Of course also feel free to go over the problems of these sections.

- **Prove that two statements are equivalent.** For example, we proved that for $n \in \mathbb{Z}$, the following are equivalent:
 i. 2 divides n and 3 divides n,
 ii. 6 divides n.

- **Start (even if we haven’t covered Chapter 7 yet) realizing that some proofs are about proving that "something exists" and this will require a new kind of reasoning** (it won’t be "assume statement P and deduce statement Q" or, "suppose that x is in set A and deduce that x is in set B")...
 1. Proof of the Euclidean Division theorem which I recalled on HW1. It involved the Well Ordering Principle in \mathbb{N}.
 Note that this proof is about checking that something exists (namely the pair (q, r) in question in the theorem) but also about checking that this pair is unique (with the required properties). So this was a preview Problem 28 Chapter 7. For the existence part of the proof, see also Section 1.9 of the book (page 30).
 2. We gave the following definition: for $x \in \mathbb{R}$, there is a unique integer $\lfloor x \rfloor \in \mathbb{Z}$ such that $x \in \left[\lfloor x \rfloor, \lfloor x \rfloor + 1 \right)$. For example $\lfloor -2.6789 \rfloor = -3$ and $\lfloor 3.235 \rfloor = 3$. This allowed us to prove the following:

\[
\bigcup_{n \in \mathbb{N}, n \geq 1} \left[\frac{1}{n} - 1 \right] = (0, 1].
\]

\square Let $x \in \bigcup_{n \in \mathbb{N}, n \geq 1} \left[\frac{1}{n} - 1 \right]$. It means that x is in (at least) one of the sets of this collection namely there is (at least) one $n \in \mathbb{N}$ with $n \geq 1$ such that $x \in \left[\frac{1}{n}, 1 \right]$. Since $\left[\frac{1}{n}, 1 \right] \subseteq (0, 1]$, it implies $x \in (0, 1]$.

\square Let $x \in (0, 1]$. We have $\frac{1}{x} > 1$. Let m_0 denote the integer $\lfloor \frac{1}{x} \rfloor$. Since $\frac{1}{x} > 1$, it satisfies $m_0 \geq 1$. We have, by definition, $\frac{1}{x} \in \left(m_0, m_0 + 1 \right)$. Let n_0 denote the
integer $m_0 + 1$. Notice that $n_0 \geq 1$ (since $m_0 \geq 1$). We have $\frac{1}{x} \in [n_0 - 1, n_0)$ so $0 < \frac{1}{x} < n_0$ and $x > \frac{1}{n_0} > 0$. Therefore $x \in (\frac{1}{n_0}, 1] \subseteq [\frac{1}{n_0}, 1]$. This proves that $x \in \bigcup_{n \in \mathbb{N}, n \geq 1} \left[\frac{1}{n}, 1 \right]$. I consider this proof a proof of "existence" since, given $x \in (0, 1]$ we had to prove that there exists $n_0 \in \mathbb{N}$ with $n_0 \geq 1$ such that $x \in [\frac{1}{n_0}, 1]$.

(3) In week 4 we will do the last problem on our list (from Friday June 1st):
A natural number $n \in \mathbb{N}$ satisfying $n \geq 2$ has (at least) one divisor which is a prime number. This will use the Well Ordering Principle of \mathbb{N}.

• Compute the gcd of two integers using the Euclidean algorithm and understand why the algorithm works.
We proved in class the following result which is a generalization of Problem 29 Chapter 5 (in class we actually started by solving Problem 29 Chapter 5 so you have the solution of that problem in your notes – alternatively, notice that Problem 29 Chapter 5 is the following proposition when we take $k = 1$):

Proposition. Let $(a, b) \in \mathbb{Z} \setminus \{(0, 0)\}$ and let $k \in \mathbb{Z}$. We have:

$$\gcd(a, b) = \gcd(b, a - kb).$$

Proof. Let $(a, b, k) \in \mathbb{Z}^3$. We are going to prove that the following two sets are equal:

$$\{d \in \mathbb{Z} \setminus \{0\} \text{ such that } d|a \text{ and } d|b\} = \{d' \in \mathbb{Z} \setminus \{0\} \text{ such that } d'|b \text{ and } d|a - kb\}$$

- Let $d \in \mathbb{Z} \setminus \{0\}$ such that d divides a and b. It means that there is $(x, y) \in \mathbb{Z}^2$ such that $a = xd$ and $b = yd$. So $a - kb = d(x - ky)$ and d divides also $a - kb$.
- Let $d' \in \mathbb{Z} \setminus \{0\}$ such that d' divides $a - kb$ and b. It means that there is $(x', y') \in \mathbb{Z}^2$ such that $a - kb = x'd$ and $b = y'd$. So $a = (a - kb) + kb = d(x' + ky')$ and d divides also a.

Now suppose that $(a, b) \neq (0, 0)$. It implies that $(b, a - kb) \neq (0, 0)$ why? because, by contrapositive: if $(b, a - kb) = (0, 0)$ then $b = 0$ and $a - kb = a = 0$.

Then the gcd of a and b is defined to be the largest element in the left hand side set, and the gcd of b and $a - kb$ is defined to be the largest element in the right hand side set. Since we just proved that these two sets are equal, we have

$$\gcd(a, b) = \gcd(b, a - kb).$$

□

We deduce the following, which is Problem 31 of Chapter 5:

Corollary. Let $a, b \in \mathbb{Z}$ such that $0 < b \leq a$ and $a = bq + r$ the Euclidean division of a by b. Then

$$\gcd(a, b) = \gcd(b, r).$$
Proof. This is a direct application of the proposition since $b > 0$ implies that $(a, b) \neq (0, 0)$ (so we are indeed allowed to apply the proposition).

Applying. Compute the gcd of 68 and 119.

Solution. We write the successive Euclidean divisions:

$(119 \text{ by } 68) 119 = 1 \times 68 + 51$
$(68 \text{ by } 51) 68 = 1 \times 51 + 17$
$(51 \text{ by } 17) 51 = 3 \times 17 + 0$

So $\gcd(119, 68) = \gcd(68, 51) = \gcd(51, 17) = \gcd(17, 0) = 17$.

In this context we also proved the following proposition. (We related this proposition to an observation on the multiplication table of the integers mod n— we talked about the integers a which are "invertible modulo n"). This is an introduction to the statements proved in Chapter 7 which we will cover in week 4. This should also resonate with HW3.

Proposition. Let $a \in \mathbb{Z}$ and $n \in \mathbb{N}$ with $n \geq 1$. Suppose that there is $x \in \mathbb{Z}$ such that $ax \equiv 1 \mod n$, then $\gcd(a, n) = 1$.

Proof. Let a and x be as in the proposition and suppose that there is $x \in \mathbb{Z}$ such that $ax \equiv 1 \mod n$. Then there is $y \in \mathbb{Z}$ such that $ax = 1 + ny$. Now let $d \in \mathbb{Z} \setminus \{0\}$ dividing both a and n. Then it divides $ax - ny$ which is equal to 1. So $d = 1$ or $d = -1$. This proves that $\gcd(a, n) = 1$.

This means for example that there is no integer $x \in \mathbb{Z}$ such that $21x \equiv 1 \mod 14$.

□