Problem set 5, functions, equivalence relations + review, not to be handed in.

Problems marked with a (*) should be at your level and can be used to review on Equivalence Relations, Functions, and Cardinality of Sets, as well as Divisibility in \(\mathbb{Z} \).

Problem 1 (\(*\)). Prove that for all \(x,y \in \mathbb{R} \) we have \(|x + y| \leq |x| + |y|\) and deduce that \(|x - y| \geq ||x| - |y||\).

Problem 2. Let \(X = \{(a, b), \ a \in \mathbb{Z}, \ b \in \mathbb{N} \ \text{with} \ b \geq 1\} \). Define a relation \(\mathcal{R} \) on \(X \) by
\[
(a, b) \mathcal{R} (a', b') \text{ if } ab' = a'b.
\]

1. (*) Check that \(\mathcal{R} \) is an equivalence relation. Denote by \(X/\mathcal{R} \) the set of equivalence classes.
2. Check that the function
\[
f : \ X/\mathcal{R} \rightarrow \mathbb{Q} \quad x = [(a, b)]_\mathcal{R} \mapsto \frac{a}{b}
\]
is well defined : what you have to do is show that the quantity \(\frac{a}{b} \) does not depend on the choice of the representative you pick in the class \([(a, b)]_\mathcal{R} \) (namely : take a representative \((a', b') \in X \) of the class \([(a, b)]_\mathcal{R} \) and check that \(\frac{a}{b} = \frac{a'}{b'} \)).

3. Is \(f \) injective ? surjective ?

Problem 3 (\(*\)). We define the sequence \((u_n)_{n \in \mathbb{N}}\) the following way :
\[
\begin{align*}
u_0 &= 2 \\
u_{n+1} &= 1 + \frac{1}{1 + u_n} \quad \text{for} \ n \geq 0
\end{align*}
\]
Prove that for any \(n \in \mathbb{N} \) we have \(1 \leq u_n \leq 2 \).

Problem 4 (\(*\)). For \(p \in \mathbb{N} \) a prime number and \(a \in \mathbb{Z} \), show that
\[p \text{ divides } a \text{ or } \gcd(a, p) = 1. \]

Problem 5 (\(*\)). Let \(a, b, c \in \mathbb{Z} \) and suppose that \(a \neq 0 \). Show that
\[a \text{ divides } bc \text{ and } \gcd(a, b) = 1 \Rightarrow a \text{ divides } c . \]

Hint : \(\gcd(a, b) = 1 \) implies that there is \((x, y) \in \mathbb{Z}^2 \) such that \(1 = ax + by \). Now write \(c \) using \(a, b, x, y \) and \(c \).

Problem 6 (\(*\)). Let \(p \in \mathbb{N} \) a prime number and \(a, b \in \mathbb{Z} \). Show that
\[p \text{ divides } ab \Rightarrow p \text{ divides } a \text{ or } p \text{ divides } b . \]

Hint : use the previous problems.
Problem 7 (*).
(1) Let \(p \in \mathbb{N} \) a prime number and \(a \in \mathbb{Z} \). Find all the solutions to the equation
\[
a^2 = x^2 \mod p.
\]
What are these solutions modulo \(p \)? Hint: use the previous problem.

(2) Find all the solutions modulo \(8 \) to the equation
\[
1^2 = x^2 \mod 8.
\]
What is different from what happens in the previous question?

Problem 8. Let \(p \in \mathbb{N} \) a prime number.

(1) Check that the function
\[
f : \mathbb{Z}/p\mathbb{Z} \rightarrow \mathbb{Z}/p\mathbb{Z} \quad [a]_p \mapsto [a^2]_p
\]
is well defined. Its image is by definition the set of all squares in \(\mathbb{Z}/p\mathbb{Z} \).

(2) Let \((\mathbb{Z}/p\mathbb{Z})^\times \) denote the set \(\mathbb{Z}/p\mathbb{Z} \setminus \{0\}_p \). Show that \(f \) restricts to a map
\[
f^\times : (\mathbb{Z}/p\mathbb{Z})^\times \rightarrow (\mathbb{Z}/p\mathbb{Z})^\times.
\]
Hint: use Problem 6.

(3) We want to count the elements in the image of \(f^\times \), namely the number of squares in \((\mathbb{Z}/p\mathbb{Z})^\times \).

(a) Given an element \(s \) in the range/image of \(f^\times \), what is the cardinality of its preimage \(f^{-1}\{s\} \) by \(f^\times \)?

Hint: use Problem 6.

(b) Deduce the number of squares in \((\mathbb{Z}/p\mathbb{Z})^\times \).

(c) What is the cardinality of the range/image of \(f \)?

Problem 9 (*).
(1) Let \(n, x, y, z \in \mathbb{N} \) with \(n, x, y, z \geq 1 \). Suppose that \(x^2 + y^2 = z^n \). Then compute \((xz)^2 + (yz)^2 \) in terms of \(z \).

(2) Let \(n \geq 1 \). Prove that the equation
\[
x^2 + y^2 = z^n
\]
has a solution \((x, y, z) \in \mathbb{Z} \) that satisfies \(x, y, z \geq 2 \). Split into cases, depending on the parity of \(n \) and do two proofs by induction, one for \(n \) even and another one for \(n \) odd (ex: for \(n \) even: prove by induction on \(m \geq 1 \) that the equation
\[
x^2 + y^2 = z^{2m}
\]
has a solution \((x, y, z) \in \mathbb{Z} \) that satisfies \(x, y, z \geq 2 \)).

Problem 10 (*). Define on \(\mathbb{R} \) the relation : \(x \Re y \) if \(\cos^2(x) + \cos^2(y) = 1 \). Is it an equivalence relation?

Problem 11 (*). On the set of all lines in the \(xy \) plane, we define the relation : \(D \Re D' \) if \(D \) and \(D' \) are orthogonal.

Problem 12 (*). Let \(f : X \rightarrow Y \) be a function.

(1) Recall what the following statements mean

(a) \(f \) is injective.
(b) \(f \) is surjective.
(c) \(f \) is bijective.

(2) We consider the two following functions
\[
 u : \mathbb{N} \rightarrow \mathbb{N} \\
 n \mapsto \begin{cases}
 \frac{n}{2} & \text{if } n \text{ is even} \\
 \frac{n-1}{2} & \text{if } n \text{ is odd}
 \end{cases} \quad \text{and} \quad v : \mathbb{N} \rightarrow \mathbb{N} \\
 n \mapsto 2n.
\]

(a) Describe explicitly \(u \circ v \).
(b) What is the range of \(v \circ u \)?
(c) Is \(u \) injective? surjective? bijective?
(d) Same question for \(v \).

Problem 13. Let \(\mathcal{R} \) be the relation defined on \(\mathbb{R} \times \mathbb{R} \) by
\[
(x_1, y_1) \mathcal{R} (x_2, y_2) \quad \text{if} \quad x_1^2 + y_1^2 = x_2^2 + y_2^2.
\]

(1) (*) Check that it is an equivalence relation.
(2) (*) Describe the equivalence classes. You can make a drawing.
(3) We denote by \((\mathbb{R} \times \mathbb{R})/\mathcal{R} \) the set of all equivalence classes of the previous relation.
Which of the following functions are well-defined? Justify your answer.
\[
 f : (\mathbb{R} \times \mathbb{R})/\mathcal{R} \rightarrow \mathbb{R} \\
 (x, y) \mapsto x^2 + y^2 \\
 g : (\mathbb{R} \times \mathbb{R})/\mathcal{R} \rightarrow \mathbb{R} \\
 (x, y) \mapsto x + y \\
 h : (\mathbb{R} \times \mathbb{R})/\mathcal{R} \rightarrow \mathbb{R} \\
 (x, y) \mapsto x^4 + y^4 + 2x^2y^2 + 7
\]

Problem 14. Recall the following definitions: two sets \(A \) and \(B \) have the same cardinality if there is a bijection \(A \rightarrow B \) (or equivalently a bijection \(B \rightarrow A \) since a bijection always has an inverse function); a set \(A \) is called countable if it has the same cardinality as \(\mathbb{N} \) namely if there is a bijection \(A \rightarrow \mathbb{N} \).

(1) (*) Consider the function
\[
 f : \mathbb{N} \rightarrow \mathbb{Z} \\
 x \mapsto \begin{cases}
 x/2 & \text{if } x \text{ is even} \\
 (-x-1)/2 & \text{if } x \text{ is odd}
 \end{cases}
\]
Prove carefully that \(\mathbb{Z} \) this is a bijection and deduce that \(\mathbb{Z} \) is countable.

(2) (*) Consider the function
\[
 f : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \\
 (x, y) \mapsto 2^x(2y + 1).
\]
Prove that \(\mathbb{N} \times \mathbb{N} \) is countable.
(3) (More difficult) Let X be a set and $\mathcal{P}(X)$ the set of all subsets of X. Denote by $\{0,1\}^X$ the set of all functions on X with values in $\{0,1\}$. For $Y \subseteq X$, define f_Y to be the function

$$f_Y : X \to \{0,1\}$$

$$x \mapsto \begin{cases}
1 & \text{if } x \in Y \\
0 & \text{if } x \in X \setminus Y
\end{cases}$$

(a) Prove that the function

$$F : \mathcal{P}(X) \to \{0,1\}^X$$

$$A \mapsto f_A$$

is a bijection.

(b) If X has finite cardinality equal to n, how many elements are there in $\{0,1\}^X$?

(c) If X has finite cardinality equal to n, we proved in class by induction that $\mathcal{P}(X)$ has cardinality 2^n. Give another proof for this result.

Problem 15 (*). Let $f : X \to Y$ be a function.

(1) **Image of a set by a function**

(a) For $x \in X$, what is $f(\{x\})$?

(b) How is $f(X)$ usually called?

(c) Let $\alpha : \mathbb{R} \to \mathbb{R}$ defined the following way : for $x \in \mathbb{R}$, $\alpha(x)$ is the largest integer $n \in \mathbb{Z}$ such that $x \geq n$.

 (i) Give the image of the following elements : 1, -5, -2.5, π, $-\pi$.

 (ii) Is the function α injective? surjective?

 (iii) Draw the graph of α.

 (iv) What is the image under α of the following intervals

 $(0,1)$, $[0,1]$, $(0,1]$, $[0,1)$, $(0, +\infty)$?

(2) **Pre-image of a set by a function**

(a) If f is injective and $y \in Y$, what can you say about $f^{-1}(\{y\})$?

(b) Let $Y' \subseteq Y$. Prove that $Y' \supseteq f(f^{-1}(Y'))$.

 If f is surjective show $f(f^{-1}(Y')) = Y'$. Compare with Problem 6 of Section 12.6.

(c) Let $X' \subseteq X$. Prove that $X' \subseteq f^{-1}(f(X'))$.

 If f is injective show $f^{-1}(f(X')) = X'$. Compare with Problem 5 of Section 12.6.

 See also other problems of that section, for example Problems 13 and 14.

(d) With our previous example α, give

 $\alpha^{-1}\{0\} = \ldots$

 $\alpha^{-1}\{-2\} = \ldots$

 $\alpha^{-1}\mathbb{N} = \ldots$

 $\alpha^{-1}\mathbb{Z} = \ldots$

 $\alpha^{-1}\{0.5\} = \ldots$
(3) **Restriction of the domain of a function** Given a function $f : X \rightarrow Y$ and W a subset of X, the restriction of f to W is denoted by $f|_W$. It is the function

$$f|_W : W \rightarrow Y \quad w \mapsto f(w).$$

(a) With our function α, describe $\alpha|_Z$.

(b) Consider the function

$$\cos : \mathbb{R} \rightarrow \mathbb{R} \quad x \mapsto \cos(x)$$

(i) What is the range of \cos?

(ii) Draw the graph of \cos.

(iii) Give a subset $W \subseteq \mathbb{R}$ such that $\cos|_W$ is injective.

(4) **Inverse of a function** Consider the following functions

$$\cos : \mathbb{R} \rightarrow \mathbb{R} \quad \beta : [0, +\infty) \rightarrow [0, +\infty) \quad \gamma : \mathbb{N} \rightarrow \mathbb{N} \quad \delta : \mathbb{Z} \rightarrow \mathbb{Z}$$

$$x \mapsto \cos(x) \quad x \mapsto x^2 \quad n \mapsto 2n^2 + 1 \quad n \mapsto n + 54$$

$$\epsilon : \{1, 2, 3, 4\} \rightarrow \{a, b, c, d\} \quad \zeta : \{1, 2, 3, 4\} \rightarrow \{a, b, c, d\}$$

$$\begin{array}{c|cccc}
1 & \rightarrow & a & 1 & \rightarrow & a \\
2 & \rightarrow & b & 2 & \rightarrow & b \\
3 & \rightarrow & c & 3 & \rightarrow & c \\
4 & \rightarrow & c & 4 & \rightarrow & d.
\end{array}$$

(a) Which of these functions are bijective?

(b) Give explicitly the following sets:

- $\text{graph}(\epsilon)$ and $\{(y, x), \text{ such that } (x, y) \in \text{graph}(\epsilon)\}$.

Is the second one the graph of a function?

(c) For the functions above that are bijective, describe their inverse functions.

(d) What is $\epsilon^{-1}(\{c\})$?