Problem 1. Prove the following statement:
For \(n \in \mathbb{Z} \), the integer \((n + 1)^2 - 1\) is even if and only if \(n \) is even.

A remark in the light of §5.3: I could have written "For \(n \in \mathbb{Z} \), \((n + 1)^2 - 1\) is even if and only if \(n \) is even" but this would have been breaking rule number 3.

For \(a \in \mathbb{Z} \), we denote by \(a\mathbb{Z} \) the following set:
\[
 a\mathbb{Z} = \{ax : x \in \mathbb{Z}\}.
\]

For \(a \in \mathbb{Z} \) and \(b \in \mathbb{Z} \setminus \{0\} \), we denote by \(a\mathbb{Z} + b\mathbb{Z} \) the following set:
\[
 a\mathbb{Z} + b\mathbb{Z} = \{ax + by : x, y \in \mathbb{Z}\}.
\]
For \(a \in \mathbb{Z} \) and \(b \in \mathbb{Z} \setminus \{0\} \), we say that \(b \) divides \(a \) if there is \(k \in \mathbb{Z} \) such that \(a = bk \). It is equivalent to saying that the remained of the Euclidean division of \(a \) by \(|b| \) is zero.

Problem 2. Let \(a \in \mathbb{Z} \) and \(b \in \mathbb{Z} \setminus \{0\} \). Prove that
\[
 a\mathbb{Z} \subseteq b\mathbb{Z} \text{ if and only if } b \text{ divides } a.
\]

Problem 3. Let \(a \in \mathbb{Z} \) and \(b \in \mathbb{Z} \) such that \((a, b) \neq (0, 0)\).

1. Prove that if \(n \in a\mathbb{Z} + b\mathbb{Z} \) and \(m \in a\mathbb{Z} + b\mathbb{Z} \) then we have \(n + m \in a\mathbb{Z} + b\mathbb{Z} \) and \(n - m \in a\mathbb{Z} + b\mathbb{Z} \).

2. Let \(d' \in \mathbb{N} \) with \(d' \geq 1 \) be a common divisor of \(a \) and \(b \). Show that \(a\mathbb{Z} + b\mathbb{Z} \subseteq d'\mathbb{Z} \).

3. (a) Prove that the set
\[
 (a\mathbb{Z} + b\mathbb{Z}) \cap \{n \in \mathbb{N} : n \geq 1\}
\]
is not empty. Deduce by the well ordering principle that it has a smallest element which we denote by \(d \) (there isn’t much to say here, just check that you understand why we can apply this principle here). It obviously lies in \(\mathbb{N} \) and \(d \geq 1 \).

(b) Prove that \(d\mathbb{Z} \subseteq a\mathbb{Z} + b\mathbb{Z} \) (this should follow easily from the fact that \(d \in a\mathbb{Z} + b\mathbb{Z} \))

(c) Prove that the remainder of the Euclidean division of \(a \) by \(d \) lies in \((a\mathbb{Z}+b\mathbb{Z})\cap\mathbb{N}\) (use Question (1)).

(d) Deduce that \(r = 0 \) namely \(d \) divides \(a \). (You can do a proof by contradiction: if \(r \) was not zero, it would be in \((a\mathbb{Z}+b\mathbb{Z})\cap\{n \in \mathbb{N} : n \geq 1\}\) but this contradicts the fact that...)

Likewise, we would prove that \(d \) divides \(b \) (since \(a \) and \(b \) play a symmetric role).

(e) Conclude that \(a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z} \). (Use (2) and (3)(b)).

(f) Let \(d' \in \mathbb{N} \), \(d' \geq 1 \) be a common divisor of \(a \) and \(b \). Show that \(d' \) divides \(d \) and in particular \(d \geq d' \). (Use Problem 2).

4. We have almost all the ingredients to prove:

Theorem. For \((a, b) \in \mathbb{Z} \setminus (0, 0)\), there is a unique element \(d \in \mathbb{N} \setminus \{0\} \) such that
\[
 a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}.
\]

This element is the greatest common divisor ("gcd") of \(a \) and \(b \) and in fact, more precisely, we have
any common divisor $d' \in \mathbb{N} \setminus \{0\}$ of a and b divides d.

Which part of the theorem haven’t we proved yet? (Feel free to think of how to prove the missing part!..)

(5) Show the following

Theorem. Let $a \in \mathbb{Z}$ and $n \in \mathbb{N}$ with $n \geq 1$. There is $x \in \mathbb{Z}$ such that $ax \equiv 1 \pmod{n}$ if and only if $\gcd(a,n) = 1$ (namely a and n are coprime).

(6) Write the multiplication table of the integers mod 10 and check that the above theorem is satisfied.

Problem 4. Using the Euclidean algorithm, find the gcd of 315 and 1497.