We recall the following theorem that we proved in class:

Theorem. Given \(a \in \mathbb{Z} \) and \(b \in \mathbb{Z} \) with \(b \geq 1 \). There is a unique pair \((q, r) \in \mathbb{Z}^2\) satisfying
\[a = bq + r \quad \text{and} \quad 0 \leq r < b. \]

The element \(q \) is called the **quotient** and the element \(r \) is called the **remainder** of the division.

We say that \(b \) divides \(a \) (and we sometimes write \(b | a \)) when the remainder \(r \) is equal to zero. It means that \(a \) is a multiple of \(b \).

Problem 1.
1. Write the Euclidean division of 237 by 11.
2. Does 13 divide 348?
3. Let \(a \in \mathbb{Z} \). What are the possible remainders for the division of \(a \) by 3? Give an example of \(a \) for each of the remainders of your list.
4. Suppose that \(a \in \mathbb{Z} \) is odd which means that 2 does not divide \(a \). Let \(a = 2q + r \) the Euclidean division of \(a \) by 2.
 (a) What is \(r \)?
 (b) Using \(q \), write the Euclidean division of \(a^2 \) by 2 (identify the quotient and the remainder clearly).
 (c) Is \(a^2 \) odd or not?

Problem 2. Recall that for \(x \in \mathbb{R} \), we define the absolute value \(|x| \) of \(x \) by
\[|x| = \begin{cases}
 x & \text{if } x \geq 0 \\
 -x & \text{if } x \leq 0
\end{cases} . \]

For \(a \in \mathbb{R} \) we define the sets
\[A_a = \{ x \in \mathbb{R}, \ 0 \leq |x| \leq -a^2 + a + 2 \} \ \text{and} \ B_a = \{ a \} \times A_a. \]

1. What is \(A_1 \)? (write it as an interval of \(\mathbb{R} \))
2. What is \(\mathbb{R} \setminus A_1 \)?
3. What is \(A_{-1} \)? (write it as an interval of \(\mathbb{R} \))
4. What is \(A_2 \)? (write it as an interval of \(\mathbb{R} \))
5. Is \(A_a \) non-empty for all \(a \in \mathbb{R} \)?
6. Draw the curve with equation \(y = -x^2 + x + 2 \).
7. Draw \(\bigcup_{a \in [-1,2]} B_a \).

Problem 3. Book Section 1.5 Question 8

Problem 4. Book Section 2.5 Question 8

Problem 5. Book Section 2.9 Questions 6 and 10

Problem 6. Book Section 2.10 Questions 2, 4, 6 and 8
Problem 7 (Due Friday June 1st). For \(a \in \mathbb{N} \), we denote by \(a\mathbb{Z} \) the following set:
\[
a\mathbb{Z} = \{ax : x \in \mathbb{Z}\}.
\]
For \(a \in \mathbb{N} \) and \(b \in \mathbb{N} \), we denote by \(a\mathbb{Z} + b\mathbb{Z} \) the following set:
\[
a\mathbb{Z} + b\mathbb{Z} = \{ax + by : x, y \in \mathbb{Z}\}.
\]
(1) Is \(2\mathbb{Z} \cup 3\mathbb{Z} \) equal to \(2\mathbb{Z} + 3\mathbb{Z} \)?
(2) Write the Euclidean division of 25 by 6 and show that \(1 \in 6\mathbb{Z} + 25\mathbb{Z} \).
(3) Show that \(\mathbb{Z} = 6\mathbb{Z} + 25\mathbb{Z} \).
(4) Is it true that \(\mathbb{Z} = 6\mathbb{Z} + 24\mathbb{Z} \)?

For your convenience, I recall the proof that we did in class:

Proof of the existence of a pair \((q, r)\) satisfying \(a = bq + r \) and \(0 \leq r < b \). Consider the set
\[
\mathcal{R} = \{a - xb : x \in \mathbb{Z}\}.
\]
- We first check that \(\mathcal{R} \cap \mathbb{N} \) is not empty. We can find \(n \in \mathbb{Z} \) such that the quotient \(a/b \) (which is an element of \(\mathbb{Q} \)) lies in \([n, n + 1)\). (e.g. if \(a/b = 2.123 \) then \(n = 2 \); if \(n = -1.4567 \) then \(n = -2 \).) We then have \(a/b \geq n \), so \(a \geq nb \) (because \(b \geq 1 \) and
\[
a - nb \in \mathcal{R} \cap \mathbb{N},
\]
so \(\mathcal{R} \cap \mathbb{N} \) is not empty.
- By the well-ordering principle, the set \(\mathcal{R} \cap \mathbb{N} \) has a smallest element namely:
\[
\text{there is } r \in \mathcal{R} \cap \mathbb{N} \text{ such that for any } y \in \mathcal{R} \cap \mathbb{N} \text{ we have } y \geq r.
\]
Since this element \(r \) lies in \(\mathcal{R} \) we may write it in the form \(a - xb \) for some \(x \in \mathbb{Z} \) and we are going to call \(q \) this element \(x \) (just because this is the notation used in the theorem).
We then have
\[
a = bq + r
\]
and it remains to show that \(0 \leq r < b \).
- It is clear that \(r \geq 0 \) since \(r \in \mathbb{N} \).
- Now notice that \(r - b < r \) so \(r - b \) cannot lie in \(\mathbb{N} \cap \mathcal{R} \) (whose elements are all \(\geq r \)).
But \(r - b = a - (q + 1)b \) so \(r - b \) lies in \(\mathcal{R} \). It lies in \(\mathcal{R} \) but not in \(\mathbb{N} \cap \mathcal{R} \) so it means that it does not lie in \(\mathbb{N} \). It is therefore an element of \(\mathbb{Z} \) which is not in \(\mathbb{N} \); we have proved that \(r - b < 0 \) and \(r < b \).

Proof of the uniqueness of the pair \((q, r) \in \mathbb{Z}^2 \) satisfying \(a = bq + r \) and \(0 \leq r < b \). Let \((q, r) \in \mathbb{Z}^2 \) satisfying \(a = bq + r \) and \(0 \leq r < b \) and \((q_0, r_0) \in \mathbb{Z}^2 \) satisfying \(a = bq_0 + r_0 \) and \(0 \leq r_0 < b \). We have \(-b < r - r_0 < b\) so
\[
|r - r_0| < b.
\]
But \(|r - r_0| = |(a - bq) - (a_0 - bq_0)| = b|q_0 - q| \) where \(|q_0 - q| \in \mathbb{N} \) so
\[
|r - r_0| \in \{0, b, 2b, 3b, \ldots \}.
\]
But among these elements, only 0 is \(< b \), so in fact we have \(|r - r_0| = 0 \). Therefore \(r = r_0 \) and \(b(q - q_0) = 0 \) which implies \(q = q_0 \) since \(b \geq 1 \). We have proved that \((q, r) = (q_0, r_0)\). □