${\rm Math~221,~Term~2,~2017-2018}$

Instructor: R. Ollivier (Section 202)

Thursday, February 8, 2018

Instructions

- This is a closed book/notes exam. Use of calculators is not permitted.
- You have 50 minutes.

5. ______/10

- Please do all your work on the exam provided.
- You must show your work to receive full credit on a problem (except for the multiple choice questions).

Print name:		
Print student #:	<u>.</u>	
Signature:		
Grader's use only:		
1/15		•
2/10		
3/10	•	
4/10		

1. [15 points] Find the general solution of the following system of equations. Write your answer in parametric form.

$$5x_2 + x_3 = 2$$

$$x_1 - x_2 + 2x_3 + x_4 = 1$$

$$3x_1 - 8x_2 + 5x_3 + 3x_4 = 1$$

$$L_{3} \leftarrow l_{3} + l_{2}$$

$$\begin{cases} 1 - 1 & 2 & 1 \\ 0 & 5 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{cases}$$

So
$$24 = 1 + 22 - 223 - 24$$

 $522 = 2 - 23$
 $24 = 1 - 223 - 244 + \frac{2}{5} - \frac{23}{5}$
 $= \frac{4}{5} - \frac{1}{5}23 - 24$
 $= \frac{7}{5} - \frac{1}{5} + 23 - \frac{11}{5} + 24 = 0$

a) [4 points] Are the following 3 vectors linearly independent? Explain why or why not.

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -1 \\ 5 \\ 2 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 3 \\ -2 \\ 2 \end{bmatrix}.$$

b) [3 points] Is the vector $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$ in the span ${\bf v}_1,{\bf v}_2$ and ${\bf v}_3?$ Explain.

c) [3 points] Let $A = \begin{pmatrix} 2 & -1 & 3 \\ 3 & 5 & -2 \\ 4 & 2 & 2 \end{pmatrix}$.

Find a nonzero vector \mathbf{x} such that $A\mathbf{x} = 0$. Is A one-to-one?

1) No because
$$\sqrt{3} = \sqrt{1 - \sqrt{2}}$$

Since
$$\sqrt{3} = \sqrt{1 - \sqrt{2}}$$

we have
$$A \begin{bmatrix} -1 \\ -1 \end{bmatrix} = 0$$

$$\sqrt{3} = \sqrt{1 - \sqrt{2}}$$

$$\sqrt{3} = \sqrt{3}$$

2, Na + 22 H2 0 - 23 Nay O4 H2 + 24 H3

3. [10 points] Balance the chemical equation

$$Na + H_2O \rightarrow Na_4O_4H_2 + H_3$$

and give your answer in lowest terms.

Solve
$$2i \int_{0}^{1} + 2i \int_{0}^{2} = 23 \int_{0}^{4} + 24 \int_{0}^{3} = 23 \int_{0}^{4} + 24 \int_{0}^{3} = 23 \int_{0}^{1} + 24 \int_{0}^{3} = 24 \int_{0}^{1} -4 \cdot 0 \int_{0}^{1} = 23 \int_{0}^{1} + 24 \int_{0}^{1} = 24 \int_{0}^{1$$

4. [10 points]

Find the 2×2 matrices which describe the following linear maps.

- b) [3 points] rotation by 90 degrees clockwise.
- b) [3 points] projection on the x-axis.
- c) [4 points] reflection about the origin (the point (0,0)).

e)
$$T(4) = -4$$

 $T(2) = -27$

- (a) The map $T: \mathbb{R}^2 \to \mathbb{R}^3$ given by $(x,y) \mapsto (x+y+1,2y,x)$ is linear.
- (b) If vectors $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 in \mathbb{R}^3 are linearly independent then so must be the vectors \mathbf{v}_1 and \mathbf{v}_2 .
- (c) Given three vectors $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$ in \mathbb{R}^4 which are linearly independent and A the matrix with columns $\mathbf{v_1}, \mathbf{v_2}$, and $\mathbf{v_3}$, the map $\mathbf{x} \mapsto A\mathbf{x}$ is onto.
- (d) A linear map $\mathbb{R}^3 \to \mathbb{R}^2$ must be onto.
- (e) If x_1 and x_2 are solutions to Ax = b then $x_1 x_2$ is also a solution.

(a) no,
$$T(0,0) \neq (0,0,0)$$

(b) yes
(e) No ex $V_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $V_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $V_3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
(d) No ex $T = \mathbb{R}^3$ \mathbb{R}^2