(1) A left \(\mathbb{Z}G \)-module \(M \) can be regarded as a right module by \(mg = g^{-1}m \). Therefore we can define the tensor product \(M \otimes_{\mathbb{Z}G} N \) of two \(\mathbb{Z}G \)-modules \(M, N \).

(a) Prove that \(M \otimes_{\mathbb{Z}G} N \) has the structure of a \(\mathbb{Z}G \)-module defined by the diagonal action \(g(m \otimes n) = gm \otimes gn \). Deduce that \(M \otimes_{\mathbb{Z}G} N = (M \otimes_{\mathbb{Z}} N)_G \), where \((-)_G\) denotes the coinvariant submodule.

(b) Prove that \(\text{Hom}_{\mathbb{Z}}(M, N) \) has the structure of a \(\mathbb{Z}G \)-module defined by the conjugation action \((gf)(m) = gf(g^{-1}m) \). Deduce that \(\text{Hom}_{\mathbb{Z}G}(M, N) = \text{Hom}_{\mathbb{Z}}(M, N)^G \), where \((-)^G\) denotes the invariant submodule.

(c) Let \(P \) be a projective \(\mathbb{Z}G \)-module and \(M \) be a \(\mathbb{Z} \)-free \(\mathbb{Z}G \)-module. Prove that \(P \otimes_{\mathbb{Z}} M \) is \(\mathbb{Z}G \)-projective.

(2) Let \(G \) be a finite group and \(N : M \to M \) denote the norm map defined by multiplication by \(\sum_{g \in G} g \). Prove that the induced map \(\bar{N} : M_G \to M^G \) is an isomorphism if \(M \) is a projective \(\mathbb{Z}G \)-module.

(3) Let \(F \) be a right exact functor. Assume \(\cdots \to C_1 \to C_0 \to M \to 0 \) is exact where each \(C_i \) satisfies \(L_n F(C_i) = 0 \) for \(n > 0 \). Prove that \(L_n F(M) \cong H_n(F(C)) \) for all \(n \).

(4) Let \(R = \mathbb{Z}/m \) and \(M = \mathbb{Z}/d \) where \(d > 1 \) divides \(m \). Prove that \(M \) is not injective as an \(R \)-module if there exists a prime dividing both \(d \) and \(m/d \).

(5) Prove that the following are equivalent.

(a) \(N \) is an injective \(R \)-module.

(b) \(\text{Ext}^i(R, N) \) vanishes for all \(i > 0 \) and all \(M \).

(c) \(\text{Ext}^1(M, N) \) vanishes for all \(M \).

State and prove the dual statement for the projective case.

(6) Prove that

(a) \(\text{Tor}^R_i(A, \oplus_k B_k) \cong \oplus_k \text{Tor}^R_i(A, B_k) \).

(b) \(\text{Ext}^i_R(\oplus_k A_k, B) \cong \prod_k \text{Ext}^i_R(A_k, B) \).

(7) Let \(G \) be a finite group. Let \(P \to \mathbb{Z} \) denote a projective \(\mathbb{Z}G \)-resolution of the trivial module \(\mathbb{Z} \), and \(M \) a \(\mathbb{Z}G \)-module. Assume each \(P_i \) is finitely generated.

(a) Let \(Q^n = \text{Hom}_{\mathbb{Z}G}(P_n, \mathbb{Z}) \) for \(n \geq 0 \). Show that \(0 \to \mathbb{Z} \to Q^0 \to Q^1 \to \cdots \) is exact and \(Q^n \) is \(\mathbb{Z}G \)-projective for all \(n \geq 0 \).
(b) By splicing $P \to Z$ and $Z \to Q$ obtain an exact sequence

$$\cdots \to P_2 \to P_1 \to P_0 \to Q^0 \to Q^1 \to Q^2 \to \cdots$$

of projective $\mathbb{Z}G$-modules. Set $F_i = P_i$ if $i \geq 0$ and $F_i = Q^{-i-1}$ if $i < 0$. The groups $\hat{H}^n(G, M) = H^n(\text{Hom}_{\mathbb{Z}G\text{-mod}}(F, M))$ are called the Tate cohomology groups of G. Prove that

$$\hat{H}^n(G, M) \cong \begin{cases}
H^n(G, M) & \text{if } n > 0 \\
\text{Coker } \bar{N} & \text{if } n = 0 \\
\ker \bar{N} & \text{if } n = -1 \\
H_{-n-1}(G, M) & \text{if } n < -1
\end{cases}$$

where $\bar{N}: M_G \to M^G$ is as in (2).