PRACTICE SET 3

SECTION 6.1

Exercise 4. What is the remainder when $5!25!$ is divided by 31?

Exercise 10. What is the remainder when 6^{2000} is divided by 11?

Exercise 12. Using Fermat’s little theorem, find the least positive residue of $2^{1.000.000}$ modulo 17.

Exercise 24. Show that $1^p + 2^p + 3^p + \cdots + (p-1)^p \equiv 0 \pmod{p}$ when p is an odd prime.

SECTION 6.2

Exercise 2. Show that 45 is a pseudoprime to the bases 17 and 19.

Exercise 8. Show that if p is a prime and $2^p - 1$ is composite, then $2^p - 1$ is a pseudoprime to the base 2.

Exercise 12. Show that 25 is a strong pseudoprime to the base 7.

Exercise 18. (a) Show that every integer of the form $(6m+1)(12m+1)(18m+1)$, where m is a positive integer such that $6m+1, 12m+1,$ and $18m+1$ are all primes, is a Carmichael number.

(b) Conclude from part (a) that $1729 = 7 \cdot 13 \cdot 19$; $294,409 = 37 \cdot 73 \cdot 109$; $56,052,361 = 211 \cdot 421 \cdot 631$; $118,901,521 = 271 \cdot 541 \cdot 811$; and $172,947,529 = 307 \cdot 613 \cdot 919$ are Carmichael numbers.

SECTION 6.3

Exercise 6. Find the last digit of the decimal expansion of $\pi^{999.999}$.

Exercise 8. Show that if a is an integer such that a is not divisible by 3 or such that a is divisible by 9, then $a^7 \equiv a \pmod{63}$.

Exercise 10. Show that $a^{\phi(b)} + b^{\phi(a)} \equiv 1 \pmod{ab}$, if a and b are relatively prime positive integers.

Exercise 14. Show that the solutions to the simultaneous system of congruences

\[
\begin{align*}
 x &\equiv a_1 \pmod{m_1} \\
 x &\equiv a_2 \pmod{m_2} \\
 \vdots \\
 x &\equiv a_r \pmod{m_r},
\end{align*}
\]
where the \(m_j \) are pairwise relatively prime, are given by

\[x \equiv a_1 M_1^{\phi(m_1)} + a_2 M_2^{\phi(m_2)} + \cdots + a_r M_r^{\phi(m_r)} \pmod{M}, \]

where \(M = m_1 m_2 \cdots m_r \) and \(M_j = M/m_j \) for \(j = 1, 2, \ldots, r \).

Section 7.1

Exercise 4. Find all positive integers \(n \) such that \(\phi(n) \) has each of these values. Be sure to prove that you have found all solutions.

(a) 1
(b) 2
(c) 3
(d) 4

Exercise 8. Show that there is no positive integer \(n \) such that \(\phi(n) = 14 \).

Exercise 18. Show that if \(n \) is an odd integer, then \(\phi(4n) = 2\phi(n) \).