THE CONGURANCE METHOD

This sometimes allows to show that certain Diophantine equations in \(\mathbb{Z} \) have no solutions.

Example: Find \(x, y \in \mathbb{Z} \) such that

\[
3x^2 + 2 = y^2
\]

Reducing modulo 3 we get (since \(3 \equiv 0 \pmod{3} \))

\[
z \equiv y^2 \pmod{3}
\]

Now, the possibilities for \(y \pmod{3} \) are

\[
y \equiv 0, 1, 2 \pmod{3} \implies y^2 \equiv 0, 1, 1 \pmod{3}
\]

so \(y^2 \not\equiv 2 \pmod{3} \) and we conclude

There are no solutions in the integers to the original equation.

If instead we look mod 2 we obtain

\[
3x^2 + 2 \equiv y^2 \pmod{2} \implies x^2 \equiv y^2 \pmod{2}
\]

which has solutions (take \(x = y \)).

Thus the existence of solutions mod 17 says nothing about solutions in \(\mathbb{Z} \).
Example: Solve \(4y^2 + 2x = 3 \) in \(\mathbb{Z} \)

Working \(\text{mod} \ 4 \) gives

\[2x \equiv 3 \pmod{4} \]

As \(y \equiv 0, 1, 2, 3 \Rightarrow 2x \equiv 0, 2, 1, 2 \equiv 3 \)

We conclude there are no solutions

This example indicates it is important to understand solutions of equations of the form \(aX \equiv b \pmod{m} \)

which are called "linear congruences in one variable"

Ex: We have seen that \(2x \equiv 3 \pmod{4} \) has no solutions

\[2x \equiv 3 \pmod{5} \]

\[x \equiv 0, 1, 2, 3, 4 \Rightarrow 2x \equiv 0, 2, 4, 1, \not{3} \]

So \(x \equiv 4 \pmod{5} \) is a solution

Thus all integers in \([4]\) satisfy the equation
3x ≡ 9 (mod 6)

\[x ≡ 0, 1, 2, 3, 4, 5 \Rightarrow 3x ≡ 0 (\text{mod} 6) \]

\[0, 3, 0, 0, 3, 0 \]

Thus there are three non-congruent solutions \(x ≡ 1, x ≡ 3, x ≡ 5 \) (mod 6).

These examples show that the behaviour of solutions can vary. The following theorem explains it.

Theorem: Let \(a, b, M \in \mathbb{Z} \), \(M > 0 \).

Write \(d = (a, M) \)

(A) the congruence \(ax ≡ b \) (mod \(M \)) has no solutions if \(d \nmid b \).

(B) Suppose \(d | b \), then \(ax ≡ b \) (mod \(M \)) has exactly \(d \) distinct solutions modulo \(M \).

They are given by

\[x ≡ x_0 - \frac{M}{d} t \text{ where } 0 ≤ t ≤ d-1 \]

and \(x_0 \) is a particular solution.
Corollary: \(ax \equiv 1 \pmod{m} \) has exactly one solution modulo \(m \) if and only if \((a, m) = 1 \).

Definition: Any integer solution to \(ax \equiv 1 \pmod{m} \) is called an inverse of \(a \) modulo \(m \).

Notation: Note that \(ax \equiv 1 \pmod{m} \)

\[\Rightarrow [ax] = [1] \iff [a][x] = [1] \]

We also say that \([a][x]\) and \([x]\) are inverses in \(\mathbb{Z}/m\mathbb{Z} \)

and we write \([a]^{-1}\) or \(a^{-1}\).

Examples:

\[m = 10 \]

\[
\begin{array}{cccccccccc}
a & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
\hat{a} & 1 & 1 & 7 & 7 & 3 & 3 & 9 & 9 & 1 & 1
\end{array}
\]

\[m = 5 \]

\[
\begin{array}{cccc}
a & 0 & 1 & 2 & 3 & 4 \\
\hline
\hat{a} & 1 & 3 & 2 & 4 & 1
\end{array}
\]

Corollary: Let \(p \) be prime.

Then all \(a \neq 0 \pmod{p} \) has a unique inverse modulo \(p \).
THM: Let $a, b, M \in \mathbb{Z}, \ M > 0$.

Write \(d = (a, M) \)

(A) The congruence \(ax \equiv b \pmod{M} \) has no solutions if \(d \nmid b \).

(B) Suppose \(d \mid b \). Then \(ax \equiv b \pmod{M} \) has exactly \(d \) distinct solutions \(\pmod{M} \) which are given by

\[
x \equiv x_0 - \frac{M}{d}t \quad 0 \leq t \leq d - 1
\]

where \(x_0 \) is a particular solution.

Proof: (A) Suppose \(ax_0 \equiv b \pmod{M} \) for some \(x_0 \in \mathbb{Z} \)

then \(ax_0 - b = My_0 \Rightarrow ax_0 + M(-y_0) = b \)

meaning that \(ax + My = b \) has the solution \((x_0, -y_0) \). Thus \((a, M) = d \mid b \).

By the THM for linear Diophantine equations.
(B) Suppose \(d \mid b \). Then \(aX - My = b \) has solutions

Let \((x_0, y_0) \) be a particular solution.

The general solution is given by

\[
x = x_0 - \frac{M}{d} t, \quad y = y_0 - \frac{a}{d} t, \quad t \in \mathbb{Z}
\]

So the previous expression for \(X \) gives all the integers satisfying \(aX \equiv b \pmod{M} \).

To finish we want to count the different values of \(X \pmod{M} \).

Suppose \(x_0 - \frac{M}{d} t_1 \equiv x_0 - \frac{M}{d} t_2 \pmod{M} \)

\[
\iff \frac{M}{d} (t_1 - t_2) \equiv 0 \equiv \frac{M}{d} \cdot 0 \pmod{M}
\]

\[
\iff t_2 - t_1 \equiv 0 \pmod{\frac{M}{(M, \frac{M}{d})}}
\]

\[
\iff t_2 \equiv t_1 \pmod{\frac{d}{(M, \frac{M}{d})}}.
\]

\[
\uparrow \quad \text{Because} \quad \frac{M}{d} = \frac{m}{d}
\]

Therefore taking \(t \in \{0, 1, \ldots, d-1\} \)

\[
\text{gives the desired } d \text{ non-congruent solutions } \pmod{M}.
\]
Last lecture we computed inverses mod \(M \) for \(M = 5, 10 \) by trial and error. This was possible because numbers are small.

In general to compute \(a^{-1} \pmod{M} \) we need to solve the linear Diophantine equation \(ax + My = 1 \) using Euclidean algorithm.

Example: Compute \(17^{-1} \pmod{55} \)

We want to solve \(17x \equiv 1 \pmod{55} \) which is equivalent to find a solution \((x_0, y_0)\) to \(17x + 55y = 1 \) and then \(x_0 \pmod{55} \) is the inverse we are looking for because

\[
17x_0 + 55y_0 = 1 \Rightarrow 17x_0 \equiv 1 \pmod{55}
\]
Find \((17, 55)\) using Euclidean Algorithm

\[55 = 17 \cdot 3 + 4 \]
\[17 = 4 \cdot 4 + 1 \]
\[4 = 4 \cdot 1 + 0 \]

So \((17, 55) = 1\)

Find \((x_0, y_0)\) satisfying \(17x + 55y = 1\) using back substitution

\[1 = 17 - 4 \cdot 4 = 17 - 4(55 - 17 \cdot 3) = \]
\[= 17 - 4 \cdot 55 + 12 \cdot 17 = \]
\[= 17 \cdot 13 - 55 \cdot 4 \]
\[\Rightarrow x_0 = 13, \ y_0 = -4 \]

Then \(17 \cdot 13 \equiv 1 \pmod{55}\)

That is \(17 \cdot 13 \equiv 1 \pmod{55}\)

\[\Rightarrow [17]^{-1} = [13] \text{ in } \mathbb{Z}/55 \]

We played the squaring-off game!
THE CHINESE REMAINDER THEOREM (CRT)

We have seen how to solve congruences in one variable.

How about several congruences?

Consider the following problem:

"Find a positive integer having remainder 2 when divided by 3, remainder 1 when divided by 4, and remainder 3 when divided by 5."

Using congruences this problem translates into finding a positive integer x such that

$$
\begin{align*}
 x &\equiv 2 \pmod{3} \\
 x &\equiv 1 \pmod{4} \\
 x &\equiv 3 \pmod{5}
\end{align*}
$$

This system and many others can be solved using the CRT theorem (Chinese Remainder Theorem):

Let $N_1, N_2, \ldots, N_k \in \mathbb{Z}_{>0}$ be pairwise coprime.

Let $b_1, b_2, \ldots, b_k \in \mathbb{Z}$ and consider the system

$$
\begin{align*}
 x &\equiv b_1 \pmod{N_1} \\
 x &\equiv b_2 \pmod{N_2} \\
 x &\equiv b_k \pmod{N_k}
\end{align*}
$$

Then there is a unique solution to $(*)$ mod $N_1 N_2 \ldots N_k$.
Before the proof let's see the example

\[
\begin{align*}
 x &\equiv 3 \pmod{7} \\
 x &\equiv 2 \pmod{3}
\end{align*}
\]

The first congruence gives \(x - 3 = 7k \) that is \(x = 3 + 7k \). Replacing into the second we get

\[
3 + 7k \equiv 2 \pmod{3} \Rightarrow k \equiv 2 \pmod{3}
\]

that is \(k = 2 + 3t \). Now replacing for \(k \) gives

\[
x = 3 + 7(2 + 3t) = 17 + 21t
\]

Note that 21 is the modulus predicted by CRT.

So \(x \equiv 17 \pmod{21} \) should be the solution predicted by CRT. Indeed, we check that

\[
\begin{align*}
 x = 17 + 21t &\equiv 3 + 0 \equiv 3 \pmod{7} \\
 x = 17 + 21t &\equiv 2 + 0 \equiv 2 \pmod{3}
\end{align*}
\]

This last calculation is a particular case of

Prop: Let \(a, b, n, N \in \mathbb{Z} \) with \(n > 0, N > 0 \) and \(N | n \).

If \(a \equiv b \pmod{N} \) then \(a \equiv b \pmod{N} \).

Proof: \(a - b = Nk = N(N') \Rightarrow N | a - b \iff a \equiv b \pmod{N} \).
Proof of CRT:

We first construct a solution.

Let \(M = N_1 N_2 \ldots N_k \) and \(N_i = M / N_i \).

Note that \((N_i, N_j) = 1 \), therefore the congruence \(M_i x \equiv 1 \pmod{N_i} \) has a solution \(y_i \).

Consider the integer

\[X = b_1 M_1 y_1 + b_2 M_2 y_2 + \ldots + b_k M_k y_k. \]

And observe that

\[X \equiv 0 + 0 + \ldots + b_i M_i y_i + \ldots + 0 \pmod{N_i} \]

\[\equiv b_i \pmod{N_i} \]

We now prove the solution is unique \(\text{mod} \ M \).

Let \(X \) and \(X' \) be two solutions to \((*)\).

Then \(X \equiv b_i \equiv X' \pmod{N_i} \) \(\forall i \).

\[\Rightarrow X - X' \text{ is divisible by } N_i \ \forall i \]

\[\Rightarrow X - X' \text{ is divisible by } \text{lcm}(N_1, N_2, \ldots, N_k) \]

Since \(N_i \) are pairwise coprime, we have

\[M = N_1 N_2 \ldots N_k = \text{lcm}(N_1, N_2, \ldots, N_k) \]

So \(M \mid X - X' \Rightarrow X \equiv X' \pmod{M} \).
Let us consider again

\[
\begin{align*}
\begin{cases}
X \equiv 3 \pmod{7} & N_1 = 7 \quad N_2 = 3 \\
X \equiv 2 \pmod{3} & N_1 = 3 \quad N_2 = 2
\end{cases}
\end{align*}
\]

\[M = 3 \cdot 7 = 21, \quad N_1 = \frac{N}{N_1} = 3, \quad N_2 = \frac{N}{N_2} = 7\]

we solve \(M \cdot x \equiv 1 \pmod{N_1} \):

- \(i = 1 \): \(3 \cdot x \equiv 1 \pmod{7} \Rightarrow y_1 = 5 \pmod{7} \)
- \(i = 2 \): \(7 \cdot x \equiv 1 \pmod{3} \Rightarrow y_2 = 1 \pmod{3} \)

Thus \(x \equiv 3 \cdot 3 \cdot 5 + 2 \cdot 7 \cdot 1 \equiv 45 + 14 \equiv 17 \pmod{21} \)

as expected.

Corollary: Let \(N_1, N_2, \ldots, N_k \) be positive and pairwise coprime.

Then the systems

\[
\begin{align*}
\begin{cases}
X \equiv 1 \pmod{M_1} \\
X \equiv 1 \pmod{M_2}
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
X \equiv -1 \pmod{N_1} \\
X \equiv -1 \pmod{N_2}
\end{cases}
\end{align*}
\]

have respectively the unique solution \(x \equiv 1 \pmod{M_1 \ldots M_k} \)

and \(x \equiv -1 \pmod{N_1 \ldots N_k} \).

Proof: Clearly \(x \equiv 1 \) and \(x \equiv -1 \) satisfy the systems (respectively). Then it follows from the uniqueness part of CRT that there are no other solutions \(\pmod{N_1 \ldots N_k} \).
Example: Find \(17^{-1} \mod 55 \).

We have to solve \(17x \equiv 1 \mod 55 \).

Since \(55 = 5 \cdot 11 \) we split into the congruences:

\[
\begin{align*}
17x & \equiv 1 \mod 5 \\
17x & \equiv 1 \mod 11
\end{align*}
\]

\[
\begin{align*}
2x & \equiv 1 \mod 5 \\
x & \equiv 3 \mod 5 \\
6x & \equiv 1 \mod 11
\end{align*}
\]

Note that \(3 \cdot 2 \equiv 1 \mod 5 \) and \(6 \cdot 2 \equiv 1 \mod 11 \).

Thus the system is equivalent to:

\[
\begin{align*}
x & \equiv 3 \mod 5 \\
x & \equiv 2 \mod 11
\end{align*}
\]

We can now apply CRT:

\(N_1 = 5, N_2 = 11, b_1 = 3, b_2 = 2 \).

\(N = 5 \cdot 11 = 55 \), \(M_1 = \frac{N}{N_1} = 11 \), \(M_2 = \frac{N}{N_2} = 5 \).

We have to solve \(M_i x \equiv b_i \mod N_i \):

\(i = 1 \) : \(11x \equiv 3 \mod 5 \) \(\Rightarrow y_1 = 3 \)

\(i = 2 \) : \(5x \equiv 2 \mod 11 \) \(\Rightarrow y_2 = -2 \)

Then:

\[
x = b_1 M_1 y_1 + b_2 M_2 y_2 \equiv 3 \cdot 11 \cdot 3 + 2 \cdot 5 \cdot (-2) \equiv 33 - 20 \equiv 13 \mod 55
\]

As expected since we have seen this before using Euclidean Algorithm.
Example: Compute \(8^{10003} \pmod{105} \)

Note that \(105 = 3 \cdot 5 \cdot 7 \)

We want to find an integer \(x \equiv 8^{10003} \pmod{105} \)

such that \(0 \leq x \leq 104 \). In particular, \(x \) satisfies

\[
\begin{align*}
\begin{cases}
 x \equiv 8^{10003} \pmod{3} \\
 x \equiv 8^{10003} \pmod{5} \\
 x \equiv 8^{10003} \pmod{7}
\end{cases}
\end{align*}
\]

Therefore the CRT will give the number we need.

First note that:

\[
\begin{align*}
\begin{cases}
 8 \equiv -1 \pmod{3} \\
 8 \equiv -2 \pmod{5} \\
 8 \equiv 1 \pmod{7}
\end{cases} \implies \begin{cases}
 x \equiv (-1)^{10003} \equiv -1 \pmod{3} \\
 x \equiv (-2)^{10003} \equiv 2 \pmod{5} \\
 x \equiv 1^{10003} \equiv 1 \pmod{7}
\end{cases}
\end{align*}
\]

To find \(x \), we observe

\[
(-2)^4 \equiv 16 \equiv 1 \pmod{5}
\]

Thus \(x \equiv (-2)^{10003} \equiv (-2)^3 \cdot (-2)^{2500} \equiv (-2)^3 \equiv 2 \pmod{5} \)

We conclude that we need to apply CRT to the system

\[
\begin{align*}
\begin{cases}
 x \equiv -1 \pmod{3} \\
 x \equiv 2 \pmod{5} \\
 x \equiv 1 \pmod{7}
\end{cases}
\end{align*}
\]
We have \(M_1 = 3, N_2 = 5, N_3 = 7 \)
\(b_1 = -1, b_2 = 2, b_3 = 4 \)
\(\Pi = 3 \cdot 5 \cdot 7 = 105 \), \(\frac{M_1}{N_1} = \frac{M_2}{N_2} = 35 \), \(\frac{M_3}{N_3} = 21 \), \(N_3 = 15 \)

Solving the congruences:
\[
\begin{align*}
35x &\equiv 1 \pmod{3} \\
21x &\equiv 1 \pmod{5} \\
15x &\equiv 1 \pmod{7}
\end{align*}
\]

Gives
\[
\begin{align*}
y_1 &= -1 \\
y_2 &= 4 \\
y_3 &= 1
\end{align*}
\]

Hence
\[
x \equiv b_1M_1y_1 + b_2N_2y_2 + b_3N_3y_3
\]
\[
\equiv (-1)35(-1) + 2 \cdot 21 \cdot 4 + 4 \cdot 15 \cdot 1
\]
\[
\equiv 35 + 42 + 15 \equiv 92 \pmod{105}
\]

Rem: Since \(-1 \equiv 2 \pmod{3}\) we could have grouped the congruences into:
\[
\begin{align*}
x &\equiv 2 \pmod{3} \\
x &\equiv 2 \pmod{5} \\
x &\equiv 1 \pmod{7}
\end{align*}
\]

\[
\Rightarrow \begin{align*}
x &\equiv 2 \pmod{15} \\
x &\equiv 4 \pmod{7}
\end{align*}
\]

And apply CRT to the last 2 congruences.
APPLICATIONS: DIVISIBILITY TESTS

"A number is divisible by 3 if the sum of its digits is divisible by 3."

Why is this true?

Prop: Let \(N \in \mathbb{Z}_{\geq 0} \).

\(N \) is divisible by 3 or 9 if and only if the sum of its digits is divisible by 3 or 9.

Proof: Note: \(10 \equiv 1 \pmod{3} \) and \(10 \equiv 1 \pmod{9} \).

Hence \(10^k \equiv 1 \pmod{3} \) and \(10^k \equiv 1 \pmod{9} \).

Write \(N \) in base 10, that is

\[N = a_k 10^k + a_{k-1} 10^{k-1} + \cdots + a_1 10 + a_0 \quad , \quad a_k \neq 0 \]

\[\equiv a_k + a_{k-1} + \cdots + a_1 + a_0 \pmod{3} \pmod{9} \]

Therefore \(3 \mid N \iff N \equiv 0 \pmod{3} \iff a_k + a_{k-1} + \cdots + a_1 + a_0 \equiv 0 \pmod{3} \)

And similarly for divisibility by 9. \(\Box \)
Example: \(N = 4127835 \)

\[S = \text{sum of digits} = 4 + 1 + 2 + 7 + 8 + 3 + 5 = 36 \]

Therefore \(3 \mid S \) **but** \(9 \nmid S \)

So \(3 \mid N \) **but** \(9 \nmid N \)

Proof: Let \(N \in \mathbb{Z}_{+} \).

\(N \) **is divisible by** \(M \) **if and only if** \(M \) **divides**

the alternate sum of the digits of \(N \) **(in base 10)**

\(\equiv \)

Proof: \(10 \equiv -1 \pmod{11} \)

Hence \(10^k \equiv (-1)^k \pmod{11} \)

Thus

\[N = a_k 10^k + a_{k-1} 10^{k-1} + \ldots + a_1 10 + a_0 \]

\[\equiv a_k (-1)^k + a_{k-1} (-1)^{k-1} + \ldots + a_1 - a_0 \pmod{11} \]

Thus \(N \equiv 0 \pmod{11} \) \(\iff \) \(M \) **divides the alternate sum of the digits of** \(N \)

Example: \(N_1 = 323160823 \)

\[S = 3 + 2 + 3 - 1 + 6 - 0 + 8 - 2 + 3 = 22 \quad \Rightarrow \quad M \mid N_1 \]

\(N_2 = 33678924 \)

\[S = 3 - 3 + 6 - 7 + 8 - 9 + 2 - 4 = -4 \quad \Rightarrow \quad M \nmid N_2 \]
Prop: Let \(N, k \in \mathbb{Z}_{>0} \).

\(N \) is divisible by \(2^k \) if and only if the integer \(N' \) obtained from the last \(k \) digits of \(N \) is divisible by \(2^k \).

Proof: We have \(10 \equiv 0 \pmod{2} \Rightarrow 10 \equiv 0 \pmod{2^3} \).

Write \(N = a_k 10^k + \ldots + a_1 10 + a_0 \).

Thus \(N \equiv a_0 \pmod{2} \)
\(N \equiv a_k 10 \equiv a_k \pmod{4} \)
\(N \equiv a_k 10^2 + a_1 10 + a_0 \pmod{8} \)
\(\vdots \)
\(N \equiv a_3 10^3 + \ldots + a_1 10 + a_0 \pmod{2^3} \)

Example: \(N = 32688048 \)
\(2 \mid 8, 4 \mid 48, 8 \mid 048, 16 \mid 8048, 32 \mid 88048 \)

Thus \(2, 4, 8, 16 \mid N \) and \(32 \mid N \).
Fast Modular Exponentiation

Given $a, k, m \in \mathbb{Z}^+$, $m \geq 2$. How to compute

Quickly $\quad a^k \pmod{m}$

Step 1: Write the exponent in base 2, that is

$$k = 2^{r_1} + 2^{r_2} + \ldots + 2^{r_e} \quad , \quad r_1 > r_2 > \ldots > r_e$$

Step 2: Compute $a, a^2, a^4, \ldots, a^{2^{r_1}} \pmod{m}$ by successive squaring and reduction mod m.

Step 3: Compute $\quad a^k = a^{2^{r_1}} \cdot a^{2^{r_2}} \cdot \ldots \cdot a^{2^{r_e}}$.

Example: Compute $7^5 \pmod{17}$

(1) $5 = 2^2 + 2^1 + 2^0 = 32 + 16 + 2 + 1$

(2) $7 \equiv 7 \pmod{17}$, $7^2 \equiv 49 \equiv 15 \equiv -2 \pmod{17}$

$$7^4 \equiv (-2)^2 \equiv 4 \pmod{17} \quad , \quad 7^8 \equiv 4^2 \equiv 16 \equiv -1 \pmod{17}$$

(3) $7^5 = 7^{4+2+16+32} = 7^5 \cdot 7^1 \cdot 7^{16} \cdot 7^{32}$

$$7^5 \equiv 7 \cdot 7 \cdot 7 \cdot 7 \equiv 7 \cdot (-2) \cdot 1 \cdot 1 \equiv -14 \equiv 3 \pmod{17}$$
WE PLACED THE SQUADRON ON THE MAP.

GIVING THE MIDTERM I BACK.
Applications: The ISBN10 code

- It is used to identify books.
- It is made of 10 digits \(a_1, a_2, \ldots, a_{10} \) such that:
 1. \(0 \leq a_i \leq 9 \) for \(i = 1, \ldots, 9 \)
 2. \(a_{10} \) is an integer \(\text{mod} \ 10 \). We use the letter \(X \) to identify \(10 \) \(\text{(mod} \ 11) \)

- An ISBN10 code is valid if the sum
 \[S = \sum_{i=1}^{10} i \cdot a_i = 1 \cdot a_1 + 2a_2 + \ldots + 10a_{10} \equiv 0 \ (\text{mod} \ 11) \]

Example: Our textbook code is 0-321-50031-8

And it satisfies (as expected)

\[1 \cdot 0 + 2 \cdot 3 + 3 \cdot 2 + 4 \cdot 1 + 5 \cdot 5 + 6 \cdot 0 + 7 \cdot 2 + 8 \cdot 3 + 9 \cdot 1 + 10 \cdot 8 \equiv 0 + 6 + 49 + 89 \equiv 16 \ (\text{mod} \ 11) \]

Example: 1100000000 X is invalid.

Indeed, \(S = 1 \cdot 1 + 2 \cdot 0 + 10 \cdot 10 = 103 \equiv 4 \ (\text{mod} \ 11) \)
Let: We can take a_1, \ldots, a_q to be arbitrary and
by taking $A_{10} \equiv \sum_{i=1}^{q} i a_i = a_1 + 2 a_2 + \ldots + q a_q$

we get a valid code. Indeed,

$S = \sum_{i=1}^{10} i a_i = a_1 + a_2 + \ldots + a_q + 10 \left(\sum_{i=1}^{q} i a_i \right) =
\left(\sum_{i=1}^{q} i a_i \right) + 10 \left(\sum_{i=1}^{q} i a_i \right) = \left(\sum_{i=1}^{q} i a_i \right) \cdot (1+10)
= 0 \pmod{11}$

The ISBN 10 code detects single errors.

Suppose $x_1, \ldots, x_{10} \xrightarrow{\text{transmission}} y_1, \ldots, y_{10}$ is received

with one single error. That is, $\exists j$ such that

$x_j = y_j \quad \forall i \neq j$ and $y_j = x_j + a, \quad -10 \leq a \leq 10, \quad a \neq 0$

We check if y_1, \ldots, y_{10} is valid. Indeed

$S_y = \sum_{i=1}^{10} i y_i = \sum_{i=1}^{10} i x_i + j x_j = \sum_{i=1}^{10} i x_i + j (x_j + a)
= \sum_{i=1}^{10} i x_i + j a \equiv j a \pmod{11}$

and $j a \not\equiv 0 \pmod{11}$ since $i+j$ and $i+j$
THE ISBN 10 CODE DETECTS TRANSPOSITION ERRORS

Suppose \(X_1 \ldots X_{10} \rightarrow \bar{y}_1 \ldots \bar{y}_{10} \) where two digits were transposed. That is,

\[j, k \text{ such that } X_j \neq X_k \text{ and } \]

\[y_j = X_k, \quad y_k = X_j, \quad y_i = X_i \quad \forall i \neq j, k \]

We check if \(\bar{y}_1 \ldots \bar{y}_{10} \) is valid. Indeed,

\[S_y = \sum_{i=1}^{10} i \bar{y}_i = \sum_{i=1}^{10} i y_i + k X_k - k X_k + j x_j - j x_j \]

\[= \sum_{i=1}^{10} i X_i + k y_k + j y_j - k x_k - j x_j \]

\[= \sum_{i=1}^{10} i X_i + (k-j) X_j + (j-k) X_k \]

\[= S_x + (k-j)(X_j - X_k) \]

\[\equiv 0 + (k-j)(X_j - X_k) \neq 0 \text{ (mod 11)} \]

Because \(M + k-j \) and \(M + x_j - x_k \)

Since \(|k-j| \leq 10 \) and \(|X_j - X_k| \leq 10 \)

\[\neq 0 \]
WILSON'S THEOREM

Theorem (Wilson):

Let \(p \) be a prime. Then \((p-1)! \equiv -1 \pmod{p} \)

The following lemma is required to the proof, but it is important on its own.

Lemma: Let \(p \) be a prime. Let \(a \in \mathbb{Z} \).

Then \(a \equiv a^{-1} \pmod{p} \) if and only if \(a \equiv \pm 1 \pmod{p} \).

Proof: \(\iff \) Suppose \(a \equiv \pm 1 \pmod{p} \).

Since \(a \cdot 1 \equiv a \) and \((-1)(-1) \equiv 1 \pmod{p} \), we have \(a \equiv a^{-1} \pmod{p} \).

\(\Rightarrow \) Suppose \(a \equiv a^{-1} \pmod{p} \).

Then \(a^2 \equiv 1 \pmod{p} \) \(\Rightarrow a^2 - 1 = pk \), \(k \in \mathbb{Z} \).

Then \(p \mid (a-1)(a+1) \Rightarrow p \mid a-1 \) or \(p \mid a+1 \).

Then \(a \equiv 1 \pmod{p} \) or \(a \equiv -1 \pmod{p} \).

\(\because p \) being prime is necessary! Indeed,

Take \(a = 3 \) and \(p = 8 \). Then \(a^{-1} \not\equiv 3 \pmod{8} \) because \(3 \cdot 3 = 9 \equiv 1 \pmod{8} \).
Example: Take $p = 7$. Wilson's Theorem says $(p-1)! \equiv -1 \pmod{p}$.

Indeed, $6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \equiv 1 \cdot 6 \cdot (2 \cdot 4) \cdot (3 \cdot 5) \equiv 1 \cdot 6 \cdot 1 \cdot 1 \equiv -1 \pmod{7}$

Proof of Wilson's Theorem:

For $p = 2, 3$ it is true. Indeed $(2-1)! = 1 \equiv -1 \pmod{2}$

$(3-1)! = 2 \equiv -1 \pmod{3}$

Suppose $p > 3$. We have $p-1$ even.

We know that every $a \neq 0 \pmod{p}$ has an inverse a^{-1}.

By the lemma only 1 and $p-1$ are their own inverses.

So $2 \cdot 3 \cdot \ldots \cdot (p-2) \equiv (2 \cdot 2^{-1}) (3 \cdot 3^{-1}) \ldots \equiv 1 \pmod{p}$

$\Rightarrow 1 \cdot (2 \cdot 3 \cdot \ldots \cdot (p-2)) (p-1) \equiv 1 \cdot 1 \cdot (p-1) \equiv -1 \pmod{p}$

$\Rightarrow (p-1)!$ as needed.

Proposition: Let $N \in \mathbb{Z}^+$. If $(N-1)! \equiv -1 \pmod{N}$ then N is prime.

Proof: Suppose $N = a \cdot b$. We will show that $a = 1$.

We can assume $a \leq b < N$. Note $a \mid (N-1)!$.

Now $(N-1)! \equiv -1 \pmod{N}$ implies $N \mid (N-1)! + 1$ implies $a \mid (N-1)! + 1$ implies $a \mid (N-1)! + 1 - (N-1)! = 1$ implies $a = 1$. \square

Lecture 15

Fermat's Little Theorem (FLT)

Theorem (Wilson): If \(p \) is a prime then \((p-1)! \equiv -1 \pmod{p}\)

Theorem (FLT):

Let \(p \) be a prime. Let \(a \in \mathbb{Z}^\ast \), \((a, p) = 1\).

Then \(a^{p-1} \equiv 1 \pmod{p} \)

Proof: Consider the sequence of integers

\[
a, 2a, 3a, \ldots, (p-1)a
\]

We **claim** that: These integers are all distinct \(\pmod{p} \) and none of them is congruent to \(0 \) or \(\pm a \).

Therefore, \(a \cdot (2a) \cdot (3a) \cdot \ldots \cdot (p-1)a \equiv 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (p-1) \pmod{p} \) (i.e. multiplication by \(a \) is reordering then)

Thus since \(a \cdot (2a) \cdot (3a) \cdot \ldots \cdot (p-1)a \equiv a^{p-1} \cdot (1 \cdot 2 \cdot 3 \cdot \ldots \cdot (p-1)) \pmod{p} \)

We get \(a^{p-1} \cdot (p-1)! \equiv (p-1)! \)

\(\Rightarrow \) \(a^{p-1} \cdot (-1) \equiv -1 \pmod{p} \)

(Wilson's Theorem)

\(\Leftrightarrow \) \(a^{p-1} \equiv 1 \pmod{p} \), as desired
We now prove the claim:

→ Suppose \(ka \equiv k'a \pmod{p} \). Note \(a^{-1} \) exists.

Then \((ka)^{-1} \equiv (k'a)^{-1} \pmod{p} \) \(\Rightarrow k \equiv k' \pmod{p} \)

\(\Rightarrow k = k' \) since \(1 \leq k, k' \leq p-1 \)

→ We have \(p \nmid a \) and \(k \), so \(ka \not\equiv 0 \pmod{p} \)

\[\square \]

Corollary: \(a^p \equiv a \pmod{p} \) \(\forall a \in \mathbb{Z} \)

Proof: \(p \mid a \) then \(a \equiv a \pmod{p} \)

If \(p \nmid a \) by FLT \(a^{p-1} \equiv 1 \pmod{p} \)

\(\Rightarrow a^p \equiv a \pmod{p} \)

\[\square \]

Corollary: Let \(a \in \mathbb{Z} \) s.t. \((a, p) = 1 \).

Then \(a^{p-2} \equiv a^{-1} \pmod{p} \)

Proof: FLT \(\Rightarrow a^{p-1} \equiv 1 \pmod{p} \) \(\Leftrightarrow a \cdot (a^{-1}) \equiv 1 \pmod{p} \)

Corollary: Let \(a \in \mathbb{Z} \), \((a, p) = 1 \).

If \(d \equiv e \pmod{p-1} \) then \(a^d \equiv a^e \pmod{p} \)

Proof: If \(d = e \), it is direct. Suppose \(d > e \).

We have \(d - e = (p-1)k \), \(k \in \mathbb{Z}_{>0} \). Thus,

\[d = e + (p-1)k \Rightarrow a^d = a^e \cdot (a^{p-1})^k \equiv a^e \cdot a^k \equiv a^e \pmod{p} \]

\[\square \]
Example: (i) Compute $3^{20} \pmod{101}$. We have

$$3^{20} \equiv 1 \pmod{101}$$

(ii) Compute $2^{180} \pmod{87}$.

Note $p = 87$ is prime and $p-1 = 86$.

$180 \equiv 4 \pmod{86} \Rightarrow 2^{180} \equiv 2^{4} \equiv 16 \pmod{87}$

Corollary 3

Primality Testing

The converse of Wilson's Theorem gives a Primality Test

Proof: Let $N \in \mathbb{Z}_{>1}$.

If $(N-1)! \equiv -1 \pmod{N}$ then N is prime.

Proof: Suppose $N = a \cdot k$. We will show that $a = 1$.

We can assume $1 < a < N$. Note $a \mid (N-1)!$

We have $(N-1)! \equiv -1 \pmod{N} \Rightarrow N \nmid (N-1)! + 1$

$\Rightarrow a \nmid (N-1)! + 1$ (since $a \nmid N$)

$\Rightarrow a \nmid ((N-1)! + 1 - (N-1)! = 1 \Rightarrow a = 1$)

This test is only good theoretical because computing $(N-1)! \pmod{N}$ is hard.
Fermat's Test: Let $1 < b < N$

If $b^{N-1} \not\equiv 1 \pmod{N} \implies N$ is composite.

Proof: If N is prime we have $(b,N)=1$ and $b^{N-1} \equiv 1 \pmod{N}$ by FLT.

Example: $2^{30} \equiv 64 \pmod{91}$

Since $64 \not\equiv 1 \pmod{91}$ it follows 91 is composite.

Def: If N is composite but $b^{N-1} \equiv 1 \pmod{N}$ for some $1 < b < N$ we say that N is a pseudoprime to the base b.

Example:

(i) 340

\[2^{340} \equiv 1 \pmod{341} \text{ but } 341 = 11 \times 31 \]

\[\Rightarrow 341 \text{ is pseudoprime for base } b = 2. \]

(ii) $3^{340} \equiv (3^{30})^{11} \times 3^{10} \equiv 3^{10} \pmod{31}$

\[\text{Since } 3^{10} \equiv (3^3)^3 \times 3 \equiv (-4)^3 \times 3 \equiv 25 \pmod{31} \]

\[\text{we have } 3^{340} \not\equiv 1 \pmod{31} \]

\[\Rightarrow 3^{340} \not\equiv 1 \pmod{341} \]

Thus 341 fools Fermat's test in base 2.

But not in base 3.
DEF: We call an integer N a **Carmichael Number** if it is a pseudoprime for every base b such that $(N, b) = 1$.

Thus, suppose $N = p_1 \cdots p_r$ where p_i are distinct primes such that $p_i - 1 \mid N - 1 \quad \forall i$.

Then N is a Carmichael Number.

Proof: We have $N - 1 = (p_i - 1)k_i \quad \forall i, k_i \in \mathbb{Z}^+$.

Thus $b^{N-1} \equiv (b^{p_i-1})^{k_i} \equiv 1^{k_i} \equiv 1 \pmod{p_i}$ (by FLT since $(b, N) = 1 = (b, p_i)$)

Therefore, the system of congruences is satisfied

\[
\begin{align*}
1^{N-1} & \equiv 1 \pmod{p_i} \\
1^{N-1} & \equiv 1 \pmod{p_i} \quad \text{CNTR}
\end{align*}
\]

Hence N is a pseudoprime for base b and since b is arbitrary we conclude N is a CN.

Example: $561 = 3 \cdot 11 \cdot 17$ is a Carmichael Number because $3 - 1 = 2$; $11 - 1 = 10$, $17 - 1 = 16$.

All divide $561 - 1 = 560 = 2^4 \cdot 5 \cdot 7$.
Miller's Test:

1. Let N be an odd positive integer.

2. Suppose N is a pseudoprime in base $b > 2$. That is, $b^\frac{N-1}{2} \equiv \pm 1 \pmod{N}$.

3. Let $x = b^\frac{N-1}{2} \pmod{N}$.

Recall: If N is prime and $x_0^2 \equiv 1 \pmod{N}$, then $x_0 \equiv \pm 1 \pmod{N}$.

Thus, if N is prime, since $x^2 = b^\frac{N-1}{2} \equiv 1 \pmod{N}$, we conclude $x \equiv \pm 1 \pmod{N}$.

Hence, if $b^\frac{N-1}{2} \not\equiv \pm 1 \pmod{N}$ then N is composite.

If $N-1$ is divisible by 4 and $b^\frac{N-1}{4} \equiv 1 \pmod{N}$, we repeat with $y = b^\frac{N-1}{4}$.

Again, $y^2 \equiv b^\frac{N-1}{2} \equiv 1 \pmod{N} \Rightarrow y \equiv \pm 1 \pmod{N}$ if N is prime. Thus $b^\frac{N-1}{4} \not\equiv \pm 1 \Rightarrow N$ is composite.

We can repeat while $\frac{N-1}{2^k}$ is an integer.

Example: We have seen that $N = 561$ is the smallest Carmichael number, thus $b^{560} \not\equiv 1 \pmod{561}$ whenever $\gcd(b, 561) = 1$.
Take \(b = 5 \), we have \(5 \equiv 67 \equiv 1 \pmod{561} \).

Take \(b = 2 \), we have \(2^{280} \equiv 1 \pmod{561} \)

But \(2^{140} \equiv 67 \equiv 1 \pmod{561} \).

So depending on the base \(b \), we may need different number of steps in Miller's Test.

Q: Can a composite integer fool Miller's Test for every base?

Example: Let \(N = 2047 = 23 \cdot 89 \).

Then \(2^{1023} \equiv 1 \pmod{2047} \).

So that \(N \) is a pseudoprime in base \(b = 2 \).

Moreover, \(N - 1 = 1023 \) and \((2^{11})^{93} = 2048^{93} \equiv 1 \pmod{2047} \).

So 2047 fools Miller's Test for base \(b = 2 \).

THM: If \(N \) is positive, odd and composite then \(N \) fools Miller's Test for at most \(\frac{N-1}{q} \) bases \(b \) s.t. \(9 \leq b \leq N-1 \).

Rabin's Probabilistic Test: Let \(N \in \mathbb{N} \), pick \(b_1, \ldots, b_k \in \mathbb{N} \)

s.t. \(1 < b_i < N-1 \). If \(N \) is composite the probability that it passes Rabin's test for all \(b_i \) is less than \(\frac{1}{4^k} \).
THE POLLARD p-1 FACTORIZATION METHOD

Let \(N \) be a large integer.

1. Compute \(R_k \equiv 2^{k!} \pmod{N} \) recursively using fast modular exponentiation and the formula \(R_k \equiv R_{k-1}^k \pmod{N} \).

2. At each step compute \((R_{k-1}, N)\) with the Euclidean algorithm. Since \(0 \leq R_k \leq N-1 \) we have \(R_{k-1} < N \). Hence, if \((R_{k-1}, N) > 1\) we have found a proper divisor of \(N \).

Q: Why does it work?

→ Suppose \(p \mid N \) and \(p-1 \mid k! \) for some \(k \) (always possible for \(k! \) large).

→ Thus \(k! = (p-1)q \) and we have

\[
2^{k!} = 2^{(p-1)q} = (2^{p-1})^q \equiv 1^q \equiv 1 \pmod{p}
\]

→ \(p \mid 2^{k!} - 1 \)

→ We also have \(R_k = 2^{k!} + q'N \implies R_{k-1} = (2^{k!}-1) + q'N \)

→ \(p \mid R_{k-1} \) (because \(p \mid N \) and \(p \mid 2^{k!}-1 \))

Therefore \(p \mid (R_{k-1}, N) \)
Example: \(N = 10403 \)

\[
\begin{align*}
L_1 &= 2^2 = 4 \quad (\text{mod } N) \\
L_2 &= 4^3 = 64 \\
L_4 &= 64^4 = 7580 \\
L_5 &= 7580^2 = 4438 \\
L_{10} &= 9798
\end{align*}
\]

\[
\begin{align*}
(N, R_{10} - 1) &= 7 \\
(N, 9798) &= 1 \\
(N, 7580) &= 1 \\
(N, 4438) &= 1 \\
(N, 9798) &= 101
\end{align*}
\]

We obtain \(10403 = 101 \times 103 \)

Remarks:

(i) This method is good if we can find small \(k \) such that \(p - 1 \mid k! \) for some \(p / N \).

This is likely to happen when \(p - 1 \) has small prime factors.

\[
p = 101, \quad p - 1 = 100 = 2^2 \cdot 5^2
\]

\(100 \mid k! \) for \(k \geq 10 \) but \(100 \not\mid 9! \)

(ii) A large \(k \) always exists but is not practical.

(iii) We can replace 2 by any other base \(6 \pm 2 \).

(iv) In practice, this is used after trial division by small primes and before harder methods (which are not part of this course!)
Example of \(p-1 \) Pollard Factorization Method:

\[
N = 10403 = 101 \times 103
\]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(R_k \equiv R_{k-1}^2 \mod N)</th>
<th>((R_{k-1}, N))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(2^2 \equiv 4 \mod N)</td>
<td>((N, 3) = 1)</td>
</tr>
<tr>
<td>3</td>
<td>(4^3 \equiv 64)</td>
<td>((N, 64) = 1)</td>
</tr>
<tr>
<td>4</td>
<td>(64^4 \equiv 7580)</td>
<td>((N, 7579) = 1)</td>
</tr>
<tr>
<td>5</td>
<td>(7580^5 \equiv 4438)</td>
<td>((N, 4437) = 1)</td>
</tr>
<tr>
<td>10</td>
<td>(4438^9 \equiv 9779)</td>
<td>((N, 9779) = 101)</td>
</tr>
</tbody>
</table>

Remark: This method is likely to succeed when \(p-1 \) has small prime factors.

For the previous example:

- \(p = 101 \), \(p-1 = 100 = 2^2 \times 5^2 \) has small factors.
- Note also \(100 \equiv 1 \mod 101 \) for \(k = 0 \) but \(100 \not\equiv 1 \mod 9 \).
Euler's ϕ Function and Euler's Theorem

Theorem (Fermat): Let p be prime and $a \in \mathbb{Z}$ coprime to p.

Then $a^p \equiv a \pmod{p}$

Q: What if instead of p we use a modulus m which is not a prime?

Which power of a^x is guaranteed to be congruent to $1 \pmod{m}$?

A: The answer is given by Euler's Theorem. Before stating it we need to introduce a very important function

Definition: Let $N \in \mathbb{Z}^+$. The Euler ϕ-function is defined by $\phi(N) = \# \{ x \in \mathbb{Z} : 1 \leq x \leq N \text{ and } (x,N) = 1 \}$

That is, it counts the number of positive integers up to N that are coprime to N

Example:
- $\phi(1) = 1$; $\phi(2) = 1$
- $\phi(3) = 2$ since $1, 2$ are coprime to 3
- $\phi(6) = 2$ since from $1, 2, 3, 4, 5, 6$ only $1, 5$ are coprime to 6
- $\phi(p) = \# \{ x \in \mathbb{Z} : 1 \leq x \leq p \text{ and } (x,p) = 1 \} = p - 1$
Theorem (Euler): Let $a, m \in \mathbb{Z}$ with $m > 0$ and such that $(a, m) = 1$. Then \[a^{\phi(m)} \equiv 1 \pmod{m} \]

Corollary: Let $m = p$ be a prime. Then \[\phi(p) = p - 1 \] and \[a^{p-1} \equiv 1 \pmod{p} \]

This means that FLT is a special case of Euler's Theorem.

Proof of Euler's Theorem: Let $a \in \mathbb{Z}$, $(a, n) = 1$.

Let $a_1, a_2, \ldots, a_{\phi(n)}$ be the distinct positive integers $\leq n$ such that $(a_i, n) = 1$ (by def of $\phi(n)$).

Claim: The integers $a \cdot a_1, a \cdot a_2, \ldots, a \cdot a_{\phi(n)}$ are distinct mod n, satisfy $(a \cdot a_i, n) = 1$ (and are not congruent to zero).

Therefore: \[(a \cdot a_1) \cdot (a \cdot a_2) \cdots (a \cdot a_{\phi(n)}) \equiv a_1 a_2 \cdots a_{\phi(n)} \pmod{m} \]

\[\Leftrightarrow \quad a^{\phi(n)} (a_1 a_2 \cdots a_{\phi(n)}) \equiv a_1 a_2 \cdots a_{\phi(n)} \pmod{n} \].

Since $(a_1 a_2 \cdots a_{\phi(n)}, n) = 1$, the number $a_1 a_2 \cdots a_{\phi(n)}$ is invertible mod n, hence \[a^{\phi(n)} \equiv 1 \pmod{n} \]
We now prove the claim:

\[\rightarrow \text{Suppose } (a; a_i, n) > 1 \text{ for some } i. \text{ The } \exists p \text{ s.t. } p|a_i \text{ and } p|m \]
\[\rightarrow (p|a \text{ and } p|m) \text{ on } (p|a_i \text{ and } p|m) \]
\[\rightarrow (a, n) > 1 \text{ on } (a_i, n) > 0 \text{ XXX} \]

\[\rightarrow \text{Suppose } a \cdot a_i \equiv a \cdot a_j \pmod{n}. \text{ Since } (a, n) = 1 \text{ the inverse } a_i^{-1} \text{ exists hence } a_i^{-1}(a \cdot a_i) \equiv a_i^{-1}(a \cdot a_j) \pmod{n} \]
\[\Rightarrow a_i^{-1} \equiv a_j^{-1} \pmod{n} \text{ with } 0 \leq a_i, a_j \leq n-1 \]
\[\Rightarrow a_i = a_j \]

DEF: A set of integers with \(\phi(n) \) elements which are coprime to \(n \) and no two of them are congruent modulo \(n \) is a **reduced residue system modulo \(n \)**

Corollary (of the claim): Let \(a \in \mathbb{Z}^*, (a, n) = 1. \)

If \(\{a_1, a_2, \ldots, a_{\phi(n)}\} \) is a reduced residue system modulo \(m \)

then \(\{a \cdot a_1, a \cdot a_2, \ldots, a \cdot a_{\phi(n)}\} \) also is
Theorem: (Formula for \(\phi \)) Let \(N = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}, \ a_k \geq 1. \)

Then,

\[
\phi(N) = N \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_k}\right)
\]

Example: \(\phi(100) = \phi(2^2 \cdot 5^2) = 100 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right) = 40 \)

Example: Compute the last two (decimal) digits of \(3^{50} \)

Want: \(3^{50} \pmod{100} \)

Note that \(40 \equiv 3 \pmod{100} \) by Euler's Theorem,

\(3^5 = 3 \cdot 3 \equiv 9 \cdot 3 \equiv 27 \equiv (-19)^2 \cdot 3 \equiv 49 \pmod{100} \)

Example: Solve the equation \(\phi(N) = 8 \)

Let \(N = p_1^{a_1} \cdots p_k^{a_k}. \) Then \(\phi(N) = \prod_{j=1}^{k} \frac{p_j - 1}{p_j} \)

- \(\phi(N) = 8 \Rightarrow p_j - 1 \) otherwise \(\phi(N) > p_j - 1 > 8 \)
- \(p_j \neq 7 \) otherwise \(p_j - 1 = 6/8 \) xxx. Thus \(N = 2^2 \cdot 3 \cdot 5 \)
- \(a = 0 \) or \(a = 1 \) otherwise \(3 \mid 8; \) similarly \(c = 0 \) or \(c = 1 \).

1. \(b = c = 0 \Rightarrow N = 2 \overset{(a=1)}{\Rightarrow} \phi(N) = 2^{a-1} = 8 \Rightarrow a = 4 \Rightarrow N = 16 \)
2. \(b = 0, c = 1 \Rightarrow N = 2 \cdot 5 \overset{(a=1)}{\Rightarrow} \phi(N) = 2 \cdot 4 = 8 \Rightarrow a = 2 \Rightarrow N = 20 \)
3. \(b = 1, c = 0 \Rightarrow N = 2 \cdot 3 \overset{(a=1)}{\Rightarrow} \phi(N) = 2^{a-1} = 8 \Rightarrow a = 3 \Rightarrow N = 24 \)
4. \(b = c = 1 \Rightarrow N = 2 \cdot 3 \cdot 5 \overset{(a=1)}{\Rightarrow} \phi(N) = 2^{a-1} = 8 \Rightarrow a = 1 \Rightarrow N = 30 \)

For \(a = 0 \) case (4) also gives \(\phi(N) = 15 \) since \(\phi(15) = 8 \) also works!
LECTURE 18

ARITHMETIC FUNCTIONS

DEF: A function whose domain is \(\mathbb{Z}_{>0} \) is called an **ARITHMETIC FUNCTION**

Examples:

1) \(f(n) = 1 \quad \forall n \in \mathbb{Z}_{>0} \)

2) \(f(n) = n \quad \forall n \in \mathbb{Z}_{>0} \)

3) \(\phi(n) \) "The Euler \(\phi \)-function"

4) \(\tau(n) = "Number of positive divisors of \(n"\)"

5) \(\sigma(n) = \"Sum of positive divisors of \(n\)"\)

Example: Take \(n = 6 \). Its positive divisors are \(\{1, 2, 3, 6\} \). Thus \(\tau(6) = 4 \),

\[\sigma(6) = 1 + 2 + 3 + 6 = 12 \]

DEF: An arithmetic function \(f \) is called **MULTIPLICATIVE** if \(f(m \cdot n) = f(m) \cdot f(n) \) whenever \((m, n) = 1 \).

The function \(f \) is called completely **MULTIPLICATIVE** if \(f(m \cdot n) = f(m) \cdot f(n) \) \(\forall m, n \).
The function $\phi(n)$ is multiplicative.

Proof: Let $n_1, n_2 > 0$ be coprime.

We write the positive integers up to $n_1 \cdot n_2$ in the form

\[
\begin{array}{cccc}
1 & n_1 + 1 & 2n_1 + 1 & \ldots & (n_2-1)n_1 + 1 \\
2 & n_1 + 2 & 2n_1 + 2 & \ldots & (n_2-1)n_1 + 2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
N_1 & 2n_1 & 3n_1 & \ldots & n_1 \cdot n_2
\end{array}
\]

- Suppose $1 \leq r \leq n_1$ and $(r, n_1) = d > 1$. Then all the numbers in the r-th row are divisible by d.

Thus they are not coprime to $n_1 \cdot n_2$.

- Hence there are $\phi(n_1)$ rows that may contain numbers which are coprime to $n_1 \cdot n_2$.

- Suppose $(r, n_1) = 1$. Then the numbers in the r-th row are coprime to n_1.

The r-th row has n_2 elements which are not congruent mod n_2 because

$$k \cdot n_1 + r = k' \cdot n_1 + r \quad (mod \quad n_2) \Rightarrow k \equiv k' \Rightarrow k = k'$$

Thus exactly $\phi(n_2)$ of them are coprime to n_2. Since they are also coprime to n_1 they are coprime to $n_1 \cdot n_2$.

Because there are $\phi(n_1)$ rows, each containing $\phi(n_2)$ integers coprime to $n_1 \cdot n_2$ we conclude $\phi(n_1 \cdot n_2) = \phi(n_1) \cdot \phi(n_2)$.
Here is a method to produce multiplicative functions.

Theorem: Let \(f \) be an arithmetic function. Define the arithmetic function \(F \) by
\[
F(N) = \sum_{d|N, \ d > 0} f(d) \quad \forall N \in \mathbb{Z}^+.
\]

If \(f \) is multiplicative then \(F \) is multiplicative.

Theorem: \(\sigma(N) \) and \(\tau(N) \) are multiplicative.

Proof: We can write \(\tau \) and \(\sigma \) as
\[
\tau(N) = \sum_{d|N, \ d > 0} 1, \quad \sigma(N) = \sum_{d|N, \ d > 0} d.
\]

Since \(f(N) = 1 \) and \(f(N) = N \) are multiplicative, the result now follows from previous theorem.
Proof of Theorem:

Want: \(F(N_1 \cdot N_2) = F(N_1) \cdot F(N_2) \)

if \((N_1, N_2) = 1\)

We have \(F(N_1 \cdot N_2) = \sum_{d \mid N_1 \cdot N_2, d > 0} f(d) \)

Claim: Since \((N_1, N_2) = 1\) each divisor \(d\) of \(N_1 \cdot N_2\) can be written as \(d = d_1 \cdot d_2\) where \((d_1, d_2) = 1\), \(d_1 \mid N_1\), \(d_2 \mid N_2\). Also, each such product \(d_1 \cdot d_2\) is a divisor of \(N_1 \cdot N_2\).

Thus \(F(N_1 \cdot N_2) = \sum_{d_1 \mid N_1, d_2 \mid N_2, d_1 > 0, d_2 > 0} f(d_1) \cdot f(d_2) \)

\[= \left(\sum_{d_1 \mid N_1, d_1 > 0} f(d_1) \right) \left(\sum_{d_2 \mid N_2, d_2 > 0} f(d_2) \right) \]

\[= F(N_1) \cdot F(N_2) \]

\(\square\)
Formulas For ϕ, σ, τ

Let $N = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$ with p_i distinct.

Let f be ϕ, σ, or τ. Then

$$f(N) = f(p_1^{a_1}) \cdot f(p_2^{a_2}) \cdots f(p_k^{a_k})$$

Thus to find a formula for f it is enough to give a formula for $f(p_i^{a_i})$.

Lemma: $\phi(p^{a}) = p^a - p^{a-1} = p^a (1 - \frac{1}{p})$

Proof: (Note $\phi(p) = p - 1$ is a special case.)

$(N, p^a) = 1 \Rightarrow (N, p) = 1$

The multiples of p which are $\leq p^a$ are the numbers of the form $k \cdot p$ for $1 \leq k \leq p^{a-1}$

Thus, $\phi(p^a) = p^a - p^{a-1}$ \Box

Thm: $\phi(N) = \prod_{p_i \mid N} (1 - \frac{1}{p_i}) = \frac{N}{\prod_{p_i \mid N} p_i}$

Proof: $\phi(N) = \phi(p_1^{a_1}) \cdots \phi(p_k^{a_k}) = p_1^{a_1} (1 - \frac{1}{p_1}) \cdots p_k^{a_k} (1 - \frac{1}{p_k})$

$= p_1^{a_1} \cdots p_k^{a_k} \left(1 - \frac{1}{p_1} \right) \cdots \left(1 - \frac{1}{p_k} \right) = \prod_{p_i \mid N} (1 - \frac{1}{p_i})$ \Box
THM: \(\text{Let } N = p_1^{a_1} \cdots p_k^{a_k}, \) \(p_i \text{ distinct } a_i > 1. \)

THEN \(\begin{cases} \sigma(N) = \prod_{i=1}^{k} (a_i+1) \\ \tau(N) = \prod_{i=1}^{k} \left(\frac{p_i^{a_i+1}}{p_i - 1} \right) \end{cases} \)

Proof: It is enough to compute \(\sigma(p^a) \) and \(\tau(p^a) \).

- The positive divisors of \(p^a \) are \{1, p, p^2, ..., p^a\}.
- In particular, \(p^a \) has \(a+1 \) positive divisors so \(\tau(p^a) = a+1 \).
- \(\sigma(p^a) = 1 + p + ... + p^a = \frac{p^{a+1} - 1}{p - 1} \) by the formula for the sum of terms in a geometric progression.

\[\square \]

Example: \(N = 100 = 2^2 \cdot 5^2 \)

\[\begin{align*} \sigma(N) &= \frac{3}{2-1} \cdot \frac{6}{5-1} = 7.31 = 217 \\ \tau(N) &= (2+1)(2+1) = 9 \]
THM: Let \(N \in \mathbb{Z}_{>0} \). Then \(\sum_{d|N, d>0} \phi(d) = N \)

Proof: \(F(N) = \sum_{d|N, d>0} \phi(d) \) is multiplicative because \(\phi(n) \) is multiplicative.

Thus \(F(N) = F(p_1^{a_1}) \cdots F(p_k^{a_k}) \)

where \(N = p_1^{a_1} \cdots p_k^{a_k} \).

Note that \(F(p^a) = \sum_{0 \leq i \leq a} \phi(p^i) \)

\[= 1 + (p-1) + (p^2 - p) + \cdots + (p^a - p^{a-1}) = p^a \]

Thus \(F(N) = p_1^{a_1} \cdots p_k^{a_k} = N \)

\[\exists \]

Example: \(N = 12 \)

The positive divisors are \(\{1, 2, 3, 4, 6, 12\} \)

\(\phi(1) = \phi(2) = 1 \)

\(\phi(3) = \phi(4) = \phi(6) = 2 \)

\(\phi(12) = 4 \)

AND \(1 + 1 + 2 + 2 + 2 + 4 = 12 = N \) as expected!
Example: Solve $\phi(N) = 1$

Let $N = p_1^{a_1} \cdots p_k^{a_k}$.

$$\phi(N) = \prod_{i=1}^{k} p_i^{a_i - 1} (p_i - 1)$$

Suppose $\phi(N) = 1$. Then $p_i - 1 \mid 1 \Rightarrow p_i = 2 \ \forall p_i \mid N$

Thus if $N \neq 1$ then $N = p_1 2^{a_1}$, $a_1 \geq 1$

$$\Rightarrow \phi(N) = 2 ^ {a_1 - 1} \cdot 1 = 1 \Rightarrow a_1 = 1 \Rightarrow N = 2$$

Clearly $[N = 1]$ is also a solution.

Example: Solve $\phi(N) = 3$

Let $N = p_1^{a_1} \cdots p_k^{a_k}$. Then $p_i - 1 \mid 3 \ \forall p_i \mid N$

$$\Rightarrow p_i = 1 = 3 \mbox{ or } p_i - 1 = 1 \Rightarrow p_i = 4 \mbox{ or } p_i = 2$$

Note 4 is not a prime. Then $N = 2^{a_2}$, $a_2 \geq 0$.

- If $a_2 = 0$ then $N = 1$ is not a solution since $\phi(1) = 1$.
- If $a_2 \geq 1$ then $\phi(N) = 2^{a_2 - 1} \cdot (2 - 1) = 3$

Thus is impossible!

There are no solutions for $\phi(N) = 3$.
Perfect Numbers

DEF: An integer $N > 0$ is called Perfect if $\sigma(N) = 2N$.

Ex: $N = 6$. Positive Divisors $\{1, 2, 3, 6\}$

$\sigma(6) = 1 + 2 + 3 + 6 = 12 = 2 \cdot 6$

Ex: $N = 28$. Positive Divisors $\{1, 2, 4, 7, 14, 28\}$

$\sigma(28) = 1 + 2 + 4 + 7 + 14 + 28 = 56 = 2 \cdot 28$

DEF: We call the integer $M_N = 2^N - 1$ the N-th Mersenne number. If M_N is prime we say Mersenne Prime.

THM: If M_N is prime then N is prime.

Proof: Suppose $N = a \cdot b$ with $1 < a, b < N$

We have

$2^N - 1 = 2^{ab} - 1 = (2^a - 1)(2^{a(b-1)} + 2^{a(b-2)} + 2^{a(b-3)} + ... + 2^{a1})$

with both factors > 1. Thus M_N is not prime.
Example:

\[2^5 - 1 = 31 \text{ is prime}\]
\[2^7 - 1 = 127 \text{ is prime}\]
\[2^{11} - 1 = 2047 = 23 \times 89 \text{ not prime}\]
There is a 1-1 correspondence between Mersenne Primes and **even** perfect numbers.

Theorem: Let $N \in \mathbb{Z}_{>0}$.

Then N is an even perfect number if and only if $N = 2^p (2^p - 1)$ where $2^p - 1$ is a prime number.

Proof:

(\Rightarrow) Let $2^p - 1$ be a prime number. So p is also prime by the previous theorem.

Write $N = 2^{p-1} (2^p - 1)$ and compute

$$
\sigma(N) = \sigma(2^{p-1} (2^p - 1)) = \sigma(2^{p-1}) \sigma(2^p - 1) = \frac{2^p - 1}{2^p - 1} \cdot 2^p = 2(2^{p-1} (2^p - 1))
$$

Since σ is multiplicative, $(2^{p-1}, 2^p - 1) = 1$.

(\Leftarrow) By the formula for σ.

Because $2^p - 1$ is prime or also by the formula $2 \cdot N$.
Let \(N \) be an even perfect number.

Write \(N = 2^a \cdot b, \ a, b \in \mathbb{Z}_+, \ b \ odd, \ a > 1 \)

\[\sigma(N) = \sigma(2^a) \sigma(b) = \left(\frac{2^{a+1} - 1}{2 - 1} \right) \sigma(b) = (2^{a+1} - 1) \sigma(b) \]

\(\sigma \) is multiplicative

Since \(N \) is perfect \(\sigma(N) = 2N = 2 \left(2^a \cdot b \right) = 2^{a+1} \cdot b \)

\[\Rightarrow \left(2^{a+1} - 1 \right) \sigma(b) = 2^{a+1} \cdot b \hspace{1cm} (\star) \]

\[\Rightarrow 2^{a+1} \mid \sigma(b) \Rightarrow \sigma(b) = 2^{a+1} \cdot c \hspace{1cm} (\star \star) \]

Inserting in \((\star) \) gives \(\left(2^{a+1} - 1 \right) 2^{a+1} \cdot c = 2^{a+1} \cdot b \)

\[\Rightarrow \left(2^{a+1} - 1 \right) c = b \hspace{1cm} (\Delta) \]

We will show that \(c = 1 \)

Suppose \(c > 1 \). By \((\Delta) \) we see that \(b \) has at least three positive divisors \(a, c, b \) thus \(\sigma(b) \geq 1 + b + c \)

But \(\sigma(b) = 2^{a+1} \cdot c = (2^{a+1} - 1) c + c = b + c \). XXX

Thus \(c = 1 \). From \((\Delta) \) we see \(b = 2^{a+1} - 1 \) and

\((\star \star) \) gives \(\sigma(b) = 2^{a+1} = b + 1 \Rightarrow b \) is prime

Thus \(N = 2^a \cdot b = 2^a \left(2^{a+1} - 1 \right) \) where \(2^{a+1} - 1 \) is a prime, as desired.
Theorem: Let p be an odd prime.

Then any divisor of $M_p = 2^p - 1$ is of the form $2^{pk} + 1$.

Proof:

Since the product of two numbers $q_1, q_2 \equiv 1 \pmod{2p}$ is also $q_1q_2 \equiv 1 \pmod{2p}$, it is enough to prove the theorem for the prime factors of M_p.

Let $q | M_p$ be a prime. By FLT, we have

\[2^{q-1} \equiv 1 \pmod{q} \iff q \mid 2^{q-1} - 1 \]

\[\implies q \mid (2^p - 1, 2^{q-1} - 1) \overset{(*)}{=} 2^{p(q-1)} - 1 \neq 1 \]

Claim: $(*) \implies (N^{q-1}, N^{q-1} - 1) = N^{q-1} - 1$ (Lemma 4.3)

\[\implies (p, q-1) \neq 1 \implies p \mid q-1 \text{ because } p \text{ is prime} \]

Thus $q-1 = pk'$ with $k' = 2 \cdot k$ because q is odd.

Since M_p is odd, thus $q = 1 + 2^{pk}$.

Example: Is $M_{23} = 2^{23} - 1 = 8388607$ a prime?

We only need to test divisibility by primes of the form $q = 46k + 1$.

The smallest is 47 and dividing M_{23} by it shows $M_{23} = 47 \cdot 178481$.
