INSTRUCTIONS

- **Duration:** 50 minutes
- This test has **4 problems** for a total of **100 points**.
- This test has **5 pages** including this one.
- Read all the questions carefully before starting to work.
- For problems with several parts **indicate clearly** which part of it you are answering.
- You should give complete arguments and explanations for all your claims and calculations; answers without justifications will not be marked.
- You may write on the backs of pages if you run out of space.
- Attempt to answer all questions for partial credit.
- This is a closed-book examination. **None of the following are allowed:** documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

<table>
<thead>
<tr>
<th>Question:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points:</td>
<td>25</td>
<td>30</td>
<td>20</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Score:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROBLEM 1 (25 points)

Decide if the following statements are TRUE or FALSE. If a statement is TRUE give a proof and if a statement is FALSE give an example where it fails. Answering only TRUE or FALSE is worth ZERO points.

Let \(\phi \) denote the Euler \(\phi \)-function.

Let \(a, b, c, m \in \mathbb{Z} \) with \(m > 0 \).

(a) (5pts) The integer 723160823 is divisible by 11.
Answer: True.
Let \(N = 723160823 \). The alternate sum of the digits of \(N \) is \(S = 7 - 2 + 3 - 1 + 6 - 0 + 8 - 2 + 3 = 22 \). Since 11 \(| \) \(S \) we conclude by the criterion for divisibility by 11 that 11 \(| \) \(N \).

(b) (5pts) If \(a > 0 \) is odd then \(\phi(2a) = \phi(a) \).
Answer: True.
Note that \(\phi(2) = 1 \). We have \((2, a) = 1 \) because \(a \) is odd and since \(\phi \) is multiplicative it follows \(\phi(2a) = \phi(2)\phi(a) = \phi(a) \).

(c) (5pts) If \(a \equiv b \pmod{m} \) then \(c^a \equiv c^b \pmod{m} \).
Answer: False.
We have \(6 \equiv 3 \pmod{3} \) but \(2^3 \equiv 2 \not\equiv 1 \equiv 2^6 \pmod{3} \).

(d) (5pts) If \(a^2 \equiv 1 \pmod{m} \) then \(a \equiv \pm 1 \pmod{m} \).
Answer: False.
Take \(a = 3 \) and \(m = 8 \). We have \(3^2 = 9 \equiv 1 \pmod{8} \) but \(3 \not\equiv \pm 1 \pmod{8} \).

(e) (5pts) If \(\phi(m) = m - 1 \) then \(m \) is prime.
Answer: True.
We have \(\phi(m) \leq m - 1 \) by definition of the function \(\phi \). If \(m \) is not prime then \(m = ab \) with \(1 < a, b < m \) and clearly \((m, a) = a > 1 \). Thus \(\phi(m) \leq m - 2 \) because the integer \(a \) is not counted by \(\phi \).
PROBLEM 2 (30 points)

(a) (5pts) State the Chinese Remainder Theorem.

Answer: Let $n_1, n_2, \ldots, n_k \in \mathbb{Z}_{>0}$ and pairwise coprime. Let $b_1, b_2, \ldots, b_k \in \mathbb{Z}$. Then the system of congruences

$$\begin{align*}
 x &\equiv b_1 \pmod{n_1} \\
 x &\equiv b_2 \pmod{n_2} \\
 &\vdots \\
 x &\equiv b_k \pmod{n_k}
\end{align*}$$

has a unique solution modulo $M = n_1 \cdot n_2 \cdot \ldots \cdot n_k$.

(b) (25pts) Compute $8^{10003} \pmod{105}$ using the Chinese remainder theorem. Note that $105 = 3 \cdot 5 \cdot 7$.

Answer: We have to find an integer x such that

$$x \equiv 8^{10003} \pmod{105}, \quad 0 \leq x \leq 104.$$

Note that $105 = 3 \cdot 5 \cdot 7$. The value of x will also satisfy the system of congruences

$$x \equiv 8^{10003} \pmod{3} \quad x \equiv 8^{10003} \pmod{5} \quad x \equiv 8^{10003} \pmod{7},$$

which we will solve by using CRT. We first simplify the congruences above. Note that

$$8 \equiv -1 \pmod{3}, \quad 8 \equiv -2 \pmod{5}, \quad 8 \equiv 1 \pmod{7}$$

therefore

$$\begin{align*}
 x &\equiv (-1)^{10003} \equiv -1 \pmod{3} \\
 x &\equiv (-2)^{10003} \pmod{5}, \\
 x &\equiv 1^{10003} \equiv 1 \pmod{7}.
\end{align*}$$

To compute $(-2)^{10003} \pmod{5}$ we note that $(-2)^4 = 16 \equiv 1 \pmod{5}$ which implies

$$x \equiv (-2)^{10003} \equiv ((-2)^4)^{2500} \cdot (-2)^3 \equiv 1 \cdot (-8) \equiv 2 \pmod{5}.$$

We conclude that we want to use CRT with the system of congruences

$$\begin{align*}
 x &\equiv -1 \pmod{3} \\
 x &\equiv 2 \pmod{5}, \\
 x &\equiv 1 \pmod{7}.
\end{align*}$$

That is $M = 3 \cdot 5 \cdot 7 = 105$, $M_1 = 35$, $M_2 = 21$, $M_3 = 15$, $n_1 = 3$, $n_2 = 5$, $n_3 = 7$, $b_1 = -1$, $b_2 = 2$ and $b_3 = 1$.

Finally, we have to find solutions y_i to the congruences $M_i x \equiv 1 \pmod{n_i}$ that is

$$35x \equiv 2x \equiv 1 \pmod{3}, \quad 21x \equiv x \equiv 1 \pmod{5}, \quad 15x \equiv x \equiv 1 \pmod{7}.$$
we can take $y_1 = -1$, and $y_2 = y_3 = 1$. The value of $x \mod 105$ can now be computed by

$$x \equiv b_1 M_1 y_1 + b_2 M_2 y_2 + b_3 M_3 y_3 \equiv 35 + 42 + 15 \equiv 92 \pmod{105}.$$

Alternative I: Since $-1 \equiv 2 \pmod{3}$ by CRT we can rewrite the system (1) as

$$\begin{align*}
x &\equiv 2 \pmod{15} \\
x &\equiv 1 \pmod{7}
\end{align*}$$

and apply CRT to it. Indeed, $M = 15 \cdot 7 = 105$, $M_1 = 7$, $M_2 = 15$ $n_1 = 15$, $n_2 = 7$, $b_1 = 2$ and $b_2 = 1$. We need solutions y_i to the congruences $M_i x \equiv 1 \pmod{n_i}$, that is

$$7x \equiv 1 \pmod{15}, \quad 15x \equiv 1 \pmod{7},$$

hence we can take $y_1 = -2$, and $y_2 = 1$. The value of $x \mod 105$ can now be computed by

$$x \equiv b_1 M_1 y_1 + b_2 M_2 y_2 \equiv 2 \cdot 7 \cdot (-2) + 1 \cdot 15 \cdot 1 \equiv 92 \pmod{105}.$$

Alternative II: Using FLT and/or direct calculations, we check that

$$8^2 \equiv 1 \pmod{3}, \quad 8^4 \equiv 1 \pmod{5}, \quad 8 \equiv 1 \pmod{7}.$$

Since 10000 is a multiple of 2 and 4 we conclude that

$$\begin{align*}
8^{10000} &\equiv 1 \pmod{3} \\
8^{10000} &\equiv 1 \pmod{5} \\
8^{10000} &\equiv 1 \pmod{7},
\end{align*}$$

hence it follows from CRT that

$$8^{10000} \equiv 1 \pmod{105}.$$

Therefore,

$$x = 8^{10003} = 8^{10000} \cdot 8^3 \equiv 1 \cdot 512 \equiv 92 \pmod{105}.$$
Suppose that $n \in \mathbb{Z}_{>0}$ has 77 positive divisors. How many of these divisors can be primes?

Answer: Let $n = p_1^{a_1} \cdot \ldots \cdot p_k^{a_k}$, $a_i \geq 1$ be the prime decomposition of the positive integer n.

We know that the number of positive divisors of n is $\tau(n) = 77$ and it is also given by

$$\tau(n) = (a_1 + 1) \cdots (a_k + 1) = 77.$$

The positive divisors of 77 are $\{1, 7, 11, 77\}$.

Suppose $a_1 + 1 = 77$. Then $a_i = 0$ for all $i \geq 2$. Thus $n = p_1^{76}$.

Suppose $a_1 + 1 = 11$. Then $(a_2 + 1) \cdots (a_k + 1) = 7$ which implies $a_2 = 6$ and $a_i = 0$ for all $i \geq 3$. Thus $n = p_1^{10}p_2^6$.

Suppose $a_1 + 1 = 7$. Then $(a_2 + 1) \cdots (a_k + 1) = 11$ which implies $a_2 = 10$ and $a_i = 0$ for all $i \geq 3$. Thus $n = p_1^6p_2^{10}$.

Suppose $a_1 + 1 = 1$. Hence $a_1 = 0$ which contradicts $a_1 \geq 1$.

Thus n has either 1 or 2 prime factors.
PROBLEM 4 (25 points)

Let \(\phi \) be the Euler \(\phi \)-function. Find all positive integers \(n \) such that \(\phi(n) = 4 \). You can use the following fact in your proof.

FACT: If \(m \in \mathbb{Z}_{>0} \) satisfies \(\phi(m) = 2 \) then \(m = 3, 4 \) or 6.

Answer: Suppose \(\phi(n) = 4 \). Thus \(n > 1 \) because \(\phi(1) = 1 \).

Let \(n = p_1^{a_1} \cdot \ldots \cdot p_k^{a_k}, \ a_i \geq 1 \) be the prime decomposition of \(n \).

Recall that

\[
\phi(p_i^{a_i}) = p_i^{a_i-1} (p_i - 1) \quad \text{and} \quad \phi(n) = \phi(p_1^{a_1}) \cdot \ldots \cdot \phi(p_k^{a_k}).
\]

We see that \(p_i - 1 \mid 4 \) for each prime factor of \(n \), i.e. \(p_i - 1 \in \{1, 2, 4\} \), hence \(p_i = 2, 3 \) or 5. We conclude that \(n \) is of the form

\[
n = 2^a \cdot 3^b \cdot 5^c, \quad a, b, c \geq 0.
\]

If \(b \geq 2 \) then \(3 \mid \phi(n) = 4 \) a contradiction; thus \(b = 0 \) or \(b = 1 \). We now divide into two cases:

1. Suppose \(b = 1 \). Then \(n = 2^a \cdot 3 \cdot 5^c \) and

\[
4 = \phi(n) = \phi(3) \phi(2^a 5^c) = 2 \phi(2^a 5^c),
\]

hence \(\phi(2^a 5^c) = 2 \). From the fact we have \(2^a 5^c = 3, 4, 6 \) which is only possible when \(a = 2 \) and \(c = 0 \), that is \(n = 12 \).

2. Suppose \(b = 0 \). Then \(n = 2^a \cdot 5^c \).

We have \(c = 0 \) or \(c = 1 \) otherwise \(5 \mid \phi(n) = 4 \).

If \(c = 1 \) then \(n = 2^a \cdot 5 \) and \(\phi(n) = 4 \phi(2^a) = 4 \) implies \(\phi(2^a) = 1 \); thus \(a = 0, 1 \) that is \(n = 5, 10 \).

If \(c = 0 \) then \(n = 2^a \) and \(\phi(2^a) = 4 \) implies \(a = 3 \) that is \(n = 8 \).

The complete set of solutions is \(n = 5, 8, 10, 12 \).