INSTRUCTIONS

- Duration: 90 minutes
- This test has 7 problems for a total of 100 points.
- This test has 8 pages including this one.
- Read all the questions carefully before starting to work.
- For problems with several parts indicate clearly which part of it you are answering.
- You should give complete arguments and explanations for all your claims and calculations; answers without justifications will not be marked.
- You may write on the backs of pages if you run out of space.
- Attempt to answer all questions for partial credit.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

<table>
<thead>
<tr>
<th>Question:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points:</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>Score:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROBLEM 1 (10 points)

Decide if the following statements are TRUE or FALSE. If a statement is TRUE give a proof and if a statement is FALSE give an example where it fails.

Let $a, a', b, b', c, m \in \mathbb{Z}$ with $m > 0$.

(a) (2pts) If $a = da'$ and $b = db'$ where $d = (a, b)$ then $(a', b') = 1$.

Answer: True.

We have $d = ax + by$ for some $x, y \in \mathbb{Z}$; thus $d = da'x + db'y$ implies $1 = a'x + b'y$, hence $(a', b') = 1$ because (a', b') is the smallest positive integers that can be written as a integer linear combination of a' and b'.

(b) (2pts) If $c \neq 0$ and $ca \equiv cb \pmod{m}$ then $a \equiv b \pmod{m}$.

Answer: False.

For example, $6 \cdot 2 \equiv 6 \cdot 1 \pmod{3}$ but $2 \not\equiv 1 \pmod{3}$.

(c) (2pts) If $a \equiv b \pmod{m}$ then $c^a \equiv c^b \pmod{m}$.

Answer: False.

We have $6 \equiv 3 \pmod{3}$ but $2^3 \equiv 2 \not\equiv 1 \equiv 2^6 \pmod{3}$.

(d) (2pts) If $1 \leq a \leq m - 1$ then a is invertible modulo m.

Answer: False.

The integer $a = 2$ is not invertible modulo $m = 4$ and satisfies $1 \leq 2 \leq 3 = m - 1$.

(e) (2pts) If $0 \leq a, b \leq m - 1$ and $a \equiv b \pmod{m}$ then $a = b$.

Answer: True.

We have $a - b = mk$, $k \in \mathbb{Z}$ and $-(m - 1) \leq a - b \leq m - 1$. The unique multiple of m in this interval is zero, thus $a - b = 0$, that is $a = b$.
PROBLEM 2 (10 points)

(a) (2pts) State the definition of the inverse of an integer a modulo m, where m is a positive integer.

Answer: Any integer x satisfying the congruence $ax \equiv 1 \pmod{m}$ is called an inverse of a modulo m.

(b) (8pts) Compute $13^{-1} \pmod{55}$ using the Euclidean algorithm and back substitution.

Answer: Computing an inverse of 13 modulo 55 amounts to find the x-coordinate of a solution (x, y) of the equation $13x + 55y = 1$. We first use Euclidean algorithm to compute $(13, 55)$. Indeed,

$$55 = 13 \cdot 4 + 3, \quad 13 = 3 \cdot 4 + 1, \quad 3 = 1 \cdot 3 + 0$$

giving $(55, 13) = (13, 3) = (3, 1) = (1, 0) = 1$. We now apply back substitution

$$1 = 13 - 3 \cdot 4 = 13 - (55 - 13 \cdot 4) \cdot 4 = 13 - 55 \cdot 4 + 13 \cdot 16 = 13 \cdot 17 + 55 \cdot (-4)$$

to conclude that $(17, -4)$ is a solution of to the equation above. Thus $x = 17 \pmod{55}$ is the inverse of 13 modulo 55.
PROBLEM 3 (10 points)

(a) (2pts) State the Chinese Reminder Theorem.

Answer: Let \(m_1, m_2, \ldots, m_k \in \mathbb{Z}_{>0} \) and pairwise coprime. Let \(b_1, b_2, \ldots, b_k \in \mathbb{Z} \). Then the system of congruences

\[
\begin{align*}
 x &\equiv b_1 \pmod{m_1} \\
 x &\equiv b_2 \pmod{m_2} \\
 & \vdots \\
 x &\equiv b_k \pmod{m_k}
\end{align*}
\]

has a unique solution modulo \(m_1 \cdot m_2 \cdot \ldots \cdot m_k \).

(b) (8pts) Compute \(13^{-1} \pmod{55} \) using the Chinese reminder theorem.

Answer: We want to find an integer \(x \) satisfying the congruence \(13x \equiv 1 \pmod{55} \). Since \(55 = 5 \cdot 11 \) such integer \(x \) will also satisfy the congruences

\[3x \equiv 1 \pmod{5} \quad \text{and} \quad 2x \equiv 1 \pmod{11}. \]

Note that 2 is the inverse of 3 mod 5 and 6 is the inverse of 2 mod 11. Then, the previous congruences are equivalent to

\[x \equiv 2 \pmod{5} \quad \text{and} \quad x \equiv 6 \pmod{11}. \]

We now compute the solution. Let \(M = 5 \cdot 11 = 55, M_1 = 11 \) and \(M_2 = 5 \). The congruences

\[11x \equiv 1 \pmod{55} \quad \text{and} \quad 5x \equiv 1 \pmod{11} \]

have solutions \(y_1 = 1 \) and \(y_2 = 9 \), respectively. We conclude that the unique solution modulo \(M \) is

\[x \equiv 2 \cdot 11 \cdot 1 + 6 \cdot 5 \cdot 9 \equiv 22 + 270 \equiv 292 \equiv 22 + 50 \equiv 72 \equiv 17 \pmod{55} \]
PROBLEM 4 (15 points)

(a) (8pts) Show that $7^{100} \equiv 1 \pmod{1000}$.

Answer: Note that $1000 = 2^3 \cdot 5^3 = 8 \cdot 125$. By the CRT it suffices to show that

$$7^{100} \equiv 1 \pmod{8} \quad \text{and} \quad 7^{100} \equiv 1 \pmod{125}.$$

Since $\phi(8) = 4$ and $\phi(5^3) = 4 \cdot 5^2 = 100$ we have from Euler's theorem that

$$(7^4)^{25} \equiv 1^{25} \equiv 1 \pmod{8} \quad \text{and} \quad 7^{100} \equiv 1 \pmod{125},$$

as desired.

(b) (7pts) Find the three last decimal digits of 7^{999}.

(Hint: $1001 = 7 \cdot 11 \cdot 13$)

Answer: Note that $7 \cdot 7^{999} = 7^{1000} \equiv (7^{100})^{10} \equiv 1 \pmod{1000}$, where we used (a) in the last congruence. Thus $7^{999} \equiv 7^{-1} \pmod{1000}$. Now $1001 = 7 \cdot 11 \cdot 13$ implies $7 \cdot (11 \cdot 13) \equiv 1 \pmod{1000}$ that is $7^{-1} \equiv 11 \cdot 13 = 143 \pmod{1000}$. We conclude that $7^{999} \equiv 143 \pmod{1000}$ then 143 are the three last decimal digits of 7^{999}.
PROBLEM 5 (15 points)

(a) (2pts) Explain what it means for an integer \(n > 0 \) to be a pseudoprime to the base \(b \in \mathbb{Z}_{\geq 2} \).

Answer: An integer \(n > 0 \) is a pseudoprime to base \(b \in \mathbb{Z}_{\geq 2} \) if it fools Fermat’s test in base \(b \). That is, if \(n \) is composite and satisfies \(b^{n-1} \equiv 1 \pmod{n} \).

(b) (9pts) Prove that \(1729 = 7 \cdot 13 \cdot 19 \) is a Carmichael number.

Answer: A composite integer \(n \) is a Carmichael number if
\[
b^{n-1} \equiv 1 \pmod{n}
\]
for all bases \(b \) such that \((n, b) = 1 \).

Let \(n = 1729 \) and \(b \in \mathbb{Z} \) satisfy \((b, n) = 1 \). Then \((b, 7) = (b, 13) = (b, 19) = 1 \) and by Fermat’s Little Theorem we have
\[
b^6 \equiv 1 \pmod{7}, \quad b^{12} \equiv 1 \pmod{13}, \quad b^{18} \equiv 1 \pmod{19}.
\]
Note that \(n - 1 = 1728 \) is divisible by 4 (the last 2 digits are 28 which is divisible by 4) and by 9 (the sum of its digits is 18), hence \(n - 1 \) is also divisible by 6, 12 and 18. We conclude that
\[
b^{n-1} \equiv 1 \pmod{7}, \quad b^{n-1} \equiv 1 \pmod{13}, \quad b^{n-1} \equiv 1 \pmod{19}
\]
and by CRT it follows that
\[
b^{n-1} \equiv 1 \pmod{n},
\]
as desired.

(c) (4pts) Show, without using the explicit factorization of 1729, but using the following congruences instead, that 1729 is composite
\[
2^{18} \equiv 1065 \pmod{1729} \quad \text{and} \quad 2^{36} \equiv 1 \pmod{1729}.
\]

Answer: Let \(x = 2^{18} \). We have \(x^2 = 2^{36} \equiv 1 \pmod{1729} \), hence if 1729 is a prime we also have \(x \equiv \pm 1 \pmod{1729} \). This means \(x = 2^{18} \equiv 1065 \equiv \pm 1 \pmod{1729} \) which is impossible. We conclude that 1729 is composite.
PROBLEM 6 (20 points)

An old receipt has faded. It reads “88 chickens cost a total of $x4.2y$”, where x and y are unreadable digits. How much did the 88 chickens cost?

Answer: We know that the 88 chicken costed $x42y$ cents, where $0 \leq x, y \leq 9$. We have $88 = 11 \cdot 8$ then $8 \mid x42y$ and $11 \mid x42y$.

From $8 \mid x42y$ we have that $42y$ is divisible by 8, thus $y = 4$. From $11 \mid x424$ we have that $4 - 2 + 4 - x = 6 - x$ is divisible by 11 hence $x = 6$. We conclude that the 88 chicken costed $\$64.24$.
PROBLEM 7 (20 points)

Show there is no positive integer \(n \) such that \(\phi(n) = 14 \), where \(\phi \) is the Euler \(\phi \)-function.

\textbf{Answer:} Suppose \(\phi(n) = 14 \). Thus \(n > 1 \) because \(\phi(1) = 1 \). Let \(n = p_1^{a_1} \cdots p_k^{a_k}, \ a_i \geq 1 \) be the prime decomposition of \(n \). Recall that

\[\phi(p_i^{a_i}) = p_i^{a_i-1}(p_i - 1) \quad \text{and} \quad \phi(n) = \phi(p_1^{a_1}) \cdots \phi(p_k^{a_k}). \]

From the formula it follows that \(p - 1 | 14 \) for each prime \(p | n \). That is \(p - 1 \in \{1, 2, 7, 14\} \) implying \(p = 2 \) or \(3 \). Hence \(n \) has the form \(n = 2^a3^b \) where \(a, b \geq 0 \) are not both 0. From the formula we see that if \(a > 0 \) or \(b > 0 \) we have respectively

\[\phi(2^a) = 2^{a-1} \quad \text{or} \quad \phi(3^b) = 3^{b-1} \cdot 2. \]

Finally, since \(\phi(n) = \phi(2^a)\phi(3^b) \) the previous equalities show that 7 does not divide \(\phi(n) \). We conclude there is no integer \(n \) satisfying \(\phi(n) = 14 \).