Math 256. Midterm 2.

No formula sheet, books or calculators! Include this exam sheet with your answer booklet!
Name:

Part I

Circle what you think is the correct answer. +3 for a correct answer, -1 for a wrong answer, 0 for no answer.

1. The system

$$
\mathbf{y}^{\prime}=\left(\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right) \mathbf{y}
$$

has the general solution,
(a) $\mathbf{u}_{1} e^{t}+\mathbf{u}_{2} e^{3 t}$
(b) $\mathbf{u}_{1}+\mathbf{u}_{2} e^{7 t}$
(c) $\mathbf{u}_{1} t+\mathbf{u}_{2} e^{6 t}$
(d) $\mathbf{u}_{1} e^{4 t}+\mathbf{u}_{2} e^{2 t}$
(e) $\mathbf{u}_{1} e^{3 t}+\mathbf{u}_{2} e^{-t}$
for two constant vectors \mathbf{u}_{1} and \mathbf{u}_{2}.
2. For a constant matrix A and vector \mathbf{f}_{0}, the particular solution to

$$
\mathbf{x}^{\prime}=A \mathbf{x}-\mathbf{f}_{0} e^{t}
$$

is given by

$$
\text { (a) } \quad(A-I)^{-1} \mathbf{f}_{0} e^{t} \text { always, } \quad(b) \quad(A-I)^{-1} \mathbf{f}_{0} e^{t} \text { sometimes, }
$$

(c) $(A+I)^{-1} \mathbf{f}_{0} e^{t}$ if no eigenvalue of A is equal -1 ,
(d) $(I+A)^{-1} \mathbf{f}_{0} \sin t$,
(e) None of the above.
3. The Laplace transform of $e^{-t} \sin 8 t$ is
(a) $\frac{8}{(s-1)^{2}+64}$
(b) $\frac{s-1}{(s-1)^{2}+64}$
(c) $\frac{8}{s^{2}+2 s+65}$
(d) $\frac{s+1}{s^{2}+2 s+65}$
(e) None of the above.
4. The inverse Laplace transform of

$$
\frac{4}{s^{4}-1}
$$

is
(a) $e^{t}-2 \sin t$
(b) $e^{-t}-2 \cos t$
(c) $\cos 2 t-e^{-t}-e^{t}$,
(d) $e^{t}-e^{-t}-2 \sin t \quad$ (e) None of the above.

Part II

Answer in full (i.e. give as many arguments, explanations and steps as you think is needed for a normal person to understand your logic). Answer as much as you can; partial credit awarded.

1. (10 points) The positions of two masses, $x(t)$ and $y(t)$, satisfy the ODEs,

$$
x^{\prime \prime}+2 y+x=0, \quad y^{\prime \prime}+3 x+6 y=0 .
$$

Write these equations as a system and then find the general solution using the eigenvalues and eigenvectors of the constant matrix that appears in your system. If the mass at position $x(t)$ is further driven by an additional force $f(t)=\sin t$, what is the particular solution to the system, and does resonance occur? For the particular solution, you may avoid any detailed algebra and quote the answer in terms of a matrix inverse.
2. (8 points) Using the definition of the Laplace transform, show that $\mathcal{L}\left\{e^{a t} y(t)\right\}=\bar{y}(s-a)$, where a is a constant. Hence compute $\mathcal{L}\left\{t^{n} e^{-t}\right\}$, where n is an integer. Using Laplace transforms, solve the ODE

$$
y^{\prime \prime}+2 y^{\prime}+y=t^{4} e^{-t}, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

Useful Laplace Transforms

$$
\begin{aligned}
& f(t) \quad \rightarrow \quad \bar{f}(s) \\
& 1 \quad \rightarrow \quad 1 / s \\
& t^{n}, \quad n=0,1,2, \ldots \quad \rightarrow \quad n!/ s^{n+1} \\
& e^{a t} \quad \rightarrow \quad 1 /(s-a) \\
& \sin a t \quad \rightarrow \quad a /\left(s^{2}+a^{2}\right) \\
& \cos a t \rightarrow s /\left(s^{2}+a^{2}\right) \\
& t \sin a t \rightarrow 2 a s /\left(s^{2}+a^{2}\right)^{2} \\
& t \cos a t \rightarrow \quad\left(s^{2}-a^{2}\right) /\left(s^{2}+a^{2}\right)^{2} \\
& y^{\prime}(t) \quad \rightarrow \quad s \bar{y}(s)-y(0) \\
& y^{\prime \prime}(t) \quad \rightarrow \quad s^{2} \bar{y}(s)-y^{\prime}(0)-s y(0) \\
& e^{a t} f(t) \quad \rightarrow \quad \bar{f}(s-a) \\
& f(t-a) H(t-a) \quad \rightarrow \quad e^{-a s} \bar{f}(s)
\end{aligned}
$$

Helpful trig identities:

$$
\begin{gathered}
\sin 0=\sin \pi=0, \quad \sin (\pi / 2)=1=-\sin (3 \pi / 2) \\
\cos 0=-\cos \pi=1, \quad \cos (\pi / 2)=\cos (3 \pi / 2)=0 \\
\sin (-A)=-\sin A, \quad \cos (-A)=\cos A, \quad \sin ^{2} A+\cos ^{2} A=1 \\
\sin (2 A)=2 \sin A \cos A, \quad \sin (A+B)=\sin A \cos B+\cos A \sin B \\
\cos (2 A)=\cos ^{2} A-\sin ^{2} A, \quad \cos (A+B)=\cos A \cos B-\sin A \sin B,
\end{gathered}
$$

Answers

Part I:

1. Eigenvalues:

$$
\left|\begin{array}{cc}
1-\lambda & 2 \\
3 & 6-\lambda
\end{array}\right|=\lambda(\lambda-7)
$$

so (b) works.
2. For the particular solution, we would try $\mathbf{d} e^{t}$ to obtain $\mathbf{d}=(a-I)^{-1} \mathbf{f}_{0}$, which is fine unless A has an eigenvalue of unity. So (b) works.
3. We know that $\mathcal{L}\{\sin 8 t\}=8 /\left(s^{2}+64\right)$. Shifting: $\mathcal{L}\left\{e^{-t} \sin 8 t\right\}=8 /\left[(s+1)^{2}+64\right]$. Expanding the square gives (c).
4. Partial fractioning:

$$
\frac{4}{\left(s^{2}+1\right)\left(s^{2}-1\right)}=\frac{2}{s^{2}-1}-\frac{2}{s^{2}+1}=\frac{1}{s-1}-\frac{1}{s+1}-\frac{2}{s^{2}+1}
$$

Undoing the transform gives (d).
Part II:

1. Rewriting the ODEs in matrix/vector form:

$$
\frac{d^{2}}{d t^{2}}\binom{x}{y}=\left(\begin{array}{ll}
-1 & -2 \\
-3 & -6
\end{array}\right)\binom{x}{y}
$$

The matrix has eigenvalues:

$$
\left|\begin{array}{cc}
-1-\lambda & -2 \\
-3 & -6-\lambda
\end{array}\right|=\lambda(\lambda+7)
$$

For $\lambda=0$:

$$
\left(\begin{array}{ll}
-1 & -2 \\
-3 & -6
\end{array}\right)\binom{x}{y}=\binom{0}{0} \quad \rightarrow \quad\binom{x}{y}=\binom{2}{-1}
$$

For $\lambda=-7$:

$$
\left(\begin{array}{cc}
6 & -2 \\
-3 & 1
\end{array}\right)\binom{x}{y}=\binom{0}{0} \quad \rightarrow \quad\binom{x}{y}=\binom{1}{3}
$$

The solutions of the systems are given by $\mathbf{x}=\mathbf{v} e^{m t}$ with \mathbf{v} and m satisfying $m^{2} \mathbf{v}=A \mathbf{v}$ (so $m^{2}=\lambda$ and \mathbf{v} is the corresponding eigenvector). The general solution is therefore

$$
\binom{x}{y}=\binom{1}{3}(C \cos \sqrt{7} t+D \sin \sqrt{7} t)+\binom{2}{-1}(A+B t)
$$

(the zero eigenvalue requiring the additonal factor of t to arrive at the second independent solution). When the system is modified to

$$
\ddot{\mathbf{x}}=A \mathbf{x}+\binom{1}{0} \sin t
$$

the inhomogeneous term does not correspond to a homogeneous solution, and so we can get away with a trial particular solution of $\mathbf{x}_{p}=\mathbf{d} \sin t$ (there being no first derivatives). This gives

$$
\mathbf{d}=(A+I)^{-1}\binom{1}{0}
$$

Because $\sin t$ does not correspond to a homogeneous solution, there is no resonance.
2. From the definition of the Laplace transform,

$$
\mathcal{L}\left\{e^{a t} f(t)\right\}=\int_{0}^{\infty} e^{-(s-a) t} f(t) d t=\bar{f}(s-a)
$$

$$
\mathcal{L}\left\{t^{n}\right\}=\int_{0}^{\infty} e^{-s t} t^{n} d t=\left[(-s)^{-1} e^{-s t} t^{n}\right]_{0}^{\infty}+\frac{n}{s} \int_{0}^{\infty} e^{-s t} t^{n-1} d t=\frac{n}{s} \mathcal{L}\left\{t^{n-1}\right\}
$$

Repeating the integration by parts n times therefore gives the result $\mathcal{L}\left\{t^{n}\right\}=n!s^{-n-1}$. If we now use the shifting theorem (with $a=-1$), we arrive at

$$
\mathcal{L}\left\{e^{-t} t^{n}\right\}=\frac{n!}{(s+1)^{n+1}} .
$$

Laplace transforming the ODE gives

$$
\left(s^{2}+2 s+1\right) \bar{y}-1=\frac{4!}{(s+1)^{5}} \quad \rightarrow \quad \bar{y}=\frac{1}{(s+1)^{2}}+\frac{6!}{30(s+1)^{7}}
$$

Hence

$$
y(t)=t e^{-t}+\frac{t^{6} e^{-t}}{30} .
$$

