Math 256. Midterm 2.

No formula sheet, books or calculators! Include this exam sheet with your answer booklet!
Name:

Part I

Circle what you think is the correct answer. +3 for a correct answer, -1 for a wrong answer, 0 for no answer.

1. The system

$$
\mathbf{y}^{\prime}=\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right) \mathbf{y}
$$

has the general solution,
(a) $\mathbf{u}_{1} e^{t}+\mathbf{u}_{2} e^{3 t}$
(b) $\mathbf{u}_{1}+\mathbf{u}_{2} e^{4 t}$
(c) $\mathbf{u}_{1}+\mathbf{u}_{2} e^{-4 t}$
(d) $\mathbf{u}_{1} e^{4 t}+\mathbf{u}_{2} e^{2 t}$
(e) $\mathbf{u}_{1} e^{3 t}+\mathbf{u}_{2} e^{-t}$
for two constant vectors \mathbf{u}_{1} and \mathbf{u}_{2}.
2. If λ_{1} and λ_{2} are the eigenvalues of the constant matrix A, the particular solution to

$$
\mathbf{x}^{\prime \prime}=A \mathbf{x}+\mathbf{f}_{0} \sin \omega t
$$

where ω is a constant and \mathbf{f}_{0} a constant vector, is given by
(a) $\quad-\left(\omega^{2} I+A\right)^{-1} \mathbf{f}_{0} \sin \omega t$ for any ω,
(b) $\quad-\left(\omega^{2} I+A\right)^{-1} \mathbf{f}_{0} \sin \omega t$ for $-\omega^{2} \neq \lambda_{1}$ or λ_{2},
(c) $\quad-\left(\omega^{2} I+A\right)^{-1} \mathbf{f}_{0} \sin \omega t$ for $\omega \neq \lambda_{1}$ or λ_{2},
(d) $\quad\left(\omega^{2} I+A\right)^{-1} \mathbf{f}_{0} \sin \omega t$ for not all ω,
(e) None of the above.
3. The Laplace transform of $2 e^{-3 t} \sin 3 t$ is
(a) $\frac{2(s-3)}{(s-3)^{2}+9}$
(b) $\frac{2(s+3)}{(s+3)^{2}+9}$
(c) $\frac{6}{(s-3)^{2}+9}$
(d) $\frac{6}{s^{2}+6 s+18}$
(e) None of the above.
4. The inverse Laplace transform of $(s-4) /\left[(s+1)\left(s^{2}+4\right)\right]$ is
(a) $e^{2 t}-\cos t$
(b) $4 e^{-t}-\cos t$
(c) $\cos 2 t-e^{-t}$
(d) $e^{t}+\sin 2 t$
(e) None of the above.

Part II

Answer in full (i.e. give as many arguments, explanations and steps as you think is needed for a normal person to understand your logic). Answer as much as you can; partial credit awarded.

1. (10 points) The positions of two atoms in a molecule, $x(t)$ and $y(t)$, satisfy the ODEs,

$$
x^{\prime \prime}=2 y-5 x, \quad y^{\prime \prime}=2 x-8 y+\sin t
$$

Write these equations as a system and then find the general solution using the eigenvalues and eigenvectors of the constant matrix that appears in your system. Does the irradiance, modelled by the $\sin t$ forcing term, resonantly drive the molecular motions?
2. (8 points) Using Laplace transforms, solve the ODE

$$
y^{\prime \prime}+6 y^{\prime}+10 y=e^{-3 t} \cos t, \quad y(0)=y^{\prime}(0)=1
$$

Useful Laplace Transforms

$$
\begin{aligned}
& f(t) \quad \rightarrow \quad \bar{f}(s) \\
& 1 \quad \rightarrow \quad 1 / s \\
& t^{n}, \quad n=0,1,2, \ldots \quad \rightarrow \quad n!/ s^{n+1} \\
& e^{a t} \quad \rightarrow \quad 1 /(s-a) \\
& \sin a t \quad \rightarrow \quad a /\left(s^{2}+a^{2}\right) \\
& \cos a t \rightarrow s /\left(s^{2}+a^{2}\right) \\
& t \sin a t \quad \rightarrow \quad 2 a s /\left(s^{2}+a^{2}\right)^{2} \\
& t \cos a t \rightarrow\left(s^{2}-a^{2}\right) /\left(s^{2}+a^{2}\right)^{2} \\
& y^{\prime}(t) \quad \rightarrow \quad s \bar{y}(s)-y(0) \\
& y^{\prime \prime}(t) \quad \rightarrow \quad s^{2} \bar{y}(s)-y^{\prime}(0)-s y(0) \\
& e^{a t} f(t) \quad \rightarrow \quad \bar{f}(s-a) \\
& f(t-a) H(t-a) \quad \rightarrow \quad e^{-a s} \bar{f}(s)
\end{aligned}
$$

Helpful trig identities:

$$
\begin{gathered}
\sin 0=\sin \pi=0, \quad \sin (\pi / 2)=1=-\sin (3 \pi / 2) \\
\cos 0=-\cos \pi=1, \quad \cos (\pi / 2)=\cos (3 \pi / 2)=0 \\
\sin (-A)=-\sin A, \quad \cos (-A)=\cos A, \quad \sin ^{2} A+\cos ^{2} A=1 \\
\sin (2 A)=2 \sin A \cos A, \quad \sin (A+B)=\sin A \cos B+\cos A \sin B \\
\cos (2 A)=\cos ^{2} A-\sin ^{2} A, \quad \cos (A+B)=\cos A \cos B-\sin A \sin B
\end{gathered}
$$

