Math 256. Midterm 2.

No formula sheet, books or calculators! Include this exam sheet with your answer booklet! Name:

Part I

Circle what you think is the correct answer. +3 for a correct answer, -1 for a wrong answer, 0 for no answer.

1. The system

$$\mathbf{y}' = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \mathbf{y}$$

has the general solution,

(a)
$$\mathbf{u}_1 e^t + \mathbf{u}_2 e^{3t}$$
 (b) $\mathbf{u}_1 + \mathbf{u}_2 e^{4t}$ (c) $\mathbf{u}_1 + \mathbf{u}_2 e^{-4t}$ (d) $\mathbf{u}_1 e^{4t} + \mathbf{u}_2 e^{2t}$ (e) $\mathbf{u}_1 e^{3t} + \mathbf{u}_2 e^{-t}$

for two constant vectors \mathbf{u}_1 and \mathbf{u}_2 .

2. If λ_1 and λ_2 are the eigenvalues of the constant matrix A, the particular solution to

$$\mathbf{x}'' = A\mathbf{x} + \mathbf{f}_0 \sin \omega t,$$

where ω is a constant and \mathbf{f}_0 a constant vector, is given by

(a)
$$-(\omega^2 I + A)^{-1} \mathbf{f}_0 \sin \omega t$$
 for any ω , (b) $-(\omega^2 I + A)^{-1} \mathbf{f}_0 \sin \omega t$ for $-\omega^2 \neq \lambda_1$ or λ_2 ,
(c) $-(\omega^2 I + A)^{-1} \mathbf{f}_0 \sin \omega t$ for $\omega \neq \lambda_1$ or λ_2 , (d) $(\omega^2 I + A)^{-1} \mathbf{f}_0 \sin \omega t$ for not all ω ,
(e) None of the above.

3. The Laplace transform of $2e^{-3t} \sin 3t$ is

(a)
$$\frac{2(s-3)}{(s-3)^2+9}$$
 (b) $\frac{2(s+3)}{(s+3)^2+9}$ (c) $\frac{6}{(s-3)^2+9}$ (d) $\frac{6}{s^2+6s+18}$
(e) None of the above.

4. The inverse Laplace transform of $(s-4)/[(s+1)(s^2+4)]$ is

(a) $e^{2t} - \cos t$ (b) $4e^{-t} - \cos t$ (c) $\cos 2t - e^{-t}$ (d) $e^t + \sin 2t$ (e) None of the above.

Part II

Answer in full (i.e. give as many arguments, explanations and steps as you think is needed for a normal person to understand your logic). Answer as much as you can; partial credit awarded.

1. (10 points) The positions of two atoms in a molecule, x(t) and y(t), satisfy the ODEs,

$$x'' = 2y - 5x, \quad y'' = 2x - 8y + \sin t$$

Write these equations as a system and then find the general solution using the eigenvalues and eigenvectors of the constant matrix that appears in your system. Does the irradiance, modelled by the $\sin t$ forcing term, resonantly drive the molecular motions?

2. (8 points) Using Laplace transforms, solve the ODE

$$y'' + 6y' + 10y = e^{-3t} \cos t, \qquad y(0) = y'(0) = 1.$$

Useful Laplace Transforms

f(t)	\rightarrow	$\bar{f}(s)$	
1	\rightarrow	1/s	
$t^n, n=0,1,2,\dots \rightarrow n!/s^{n+1}$			
e^{at}	\rightarrow	1/(s - a)	<i>b</i>)
$\sin at$	\rightarrow	$a/(s^2 +$	$a^2)$
$\cos at$	\rightarrow	$s/(s^2 +$	$a^2)$
$t\sin at$	\rightarrow	$2as/(s^2 - 1)$	$(a^2)^2$
$t\cos at \rightarrow (s^2 - a^2)/(s^2 + a^2)^2$			
y'(t)	\rightarrow	$s\bar{y}(s) - y$	$\mu(0)$
$y''(t) \longrightarrow s^2 \bar{y}(s) - y'(0) - sy(0)$			
$e^{at}f(t) \longrightarrow \bar{f}(s-a)$			
f(t-a)H(t-a)	- a)	\rightarrow ϵ	$e^{-as}\bar{f}(s)$

Helpful trig identities:

$$\sin 0 = \sin \pi = 0, \quad \sin(\pi/2) = 1 = -\sin(3\pi/2), \\ \cos 0 = -\cos \pi = 1, \quad \cos(\pi/2) = \cos(3\pi/2) = 0, \\ \sin(-A) = -\sin A, \quad \cos(-A) = \cos A, \quad \sin^2 A + \cos^2 A = 1, \\ \sin(2A) = 2\sin A \cos A, \quad \sin(A+B) = \sin A \cos B + \cos A \sin B, \\ \cos(2A) = \cos^2 A - \sin^2 A, \quad \cos(A+B) = \cos A \cos B - \sin A \sin B, \end{cases}$$