Math 256. Midterm exam.

No formula sheet, books or calculators! Include this answer sheet with your answer booklet to receive credit for part I!

Name:

Part I

Circle what you think is the correct answer. +3 for a correct answer, -1 for a wrong answer, 0 for no answer.

1. The integrating factor for the ODE $y^{\prime}=3 x^{2} y+2 e^{x^{3}}$ is
(a) $e^{3 x^{2}}$
(b) $e^{-3 x^{2}}$
(c) $e^{x^{3}}$
(d) $e^{-x^{3}}$
(e) None of the above.
2. The solution to the $\operatorname{ODE} y^{\prime}=3 x^{2} y+2 e^{x^{3}}$ is
(a) $C+2 x e^{-x^{2}}$
(b) $(C+2 x) e^{x^{2}}$
(c) $(C+2 x) e^{-x^{3}}$
(d) $(2 x-C) e^{x^{3}}$
(e) None of the above,
where C is an arbitrary constant.
3. The ODE $y^{\prime}=-y^{2} \cos x$, with $y(0)=1$, has the solution,
(a) $\ln (\sin x+e)$
(b) $(1+\sin x)^{-1}$
(c) $e^{\sin x}$
(d) $\ln (\cos x)$
(e) None of the above.
4. The particular solution to $y^{\prime \prime}+49 y=96 \sin x$, is
(a) $2 \sin x$
(b) $\cos x-2 \sin x$
(c) $\sin x-2 \cos x$
(d) $\sin 2 x \quad$ (e) None of the above.
5. The ODE $y^{\prime \prime}+49 y=96 \sin x$, has the homogeneous solutions,
(a) $A e^{7 x}+B e^{-7 x}$
(b) $A e^{7 x}+B x e^{7 x}$
(c) $A \cos 7 x+B \sin x$
(d) $A \cos (7 x-B)$
(e) None of the above,
where A and B are arbitrary constants.

Part II

Answer in full (i.e. give as many arguments, explanations and steps as you think is needed for a normal person to understand your logic). Answer as much as you can; partial credit awarded.

1. (8 marks) (a) By treating the problem as separable, solve the first-order ODE

$$
y^{\prime}=\left(x^{2}-1\right)(1+y)
$$

(b) Now solve the problem again using an integrating factor.
2. (8 marks) Solve the ODE,

$$
y^{\prime \prime}+8 y^{\prime}+17 y=x e^{-4 x}
$$

Without solving the problem, indicate what trial particular solution you would have chosen had the righthand side actually been $e^{-4 x} \sin x$.

Helpful trig identities:

$$
\begin{gathered}
\sin 0=\sin \pi=0, \quad \sin (\pi / 2)=1=-\sin (3 \pi / 2) \\
\cos 0=-\cos \pi=1, \quad \cos (\pi / 2)=\cos (3 \pi / 2)=0 \\
\sin (-A)=-\sin A, \quad \cos (-A)=\cos A, \quad \sin ^{2} A+\cos ^{2} A=1 \\
\sin (2 A)=2 \sin A \cos A, \quad \sin (A+B)=\sin A \cos B+\cos A \sin B \\
\cos (2 A)=\cos ^{2} A-\sin ^{2} A, \quad \cos (A+B)=\cos A \cos B-\sin A \sin B \\
\frac{d}{d x} \sin x=\cos x, \quad \frac{d}{d x} \cos x=-\sin x
\end{gathered}
$$

Solutions

Part I:

1. Answer (d).

$$
p=-3 x^{2}, \quad \int p d x=-x^{3}, \quad I=e^{-x^{3}}
$$

2. Answer (d).

$$
y=-\frac{C}{I}+\frac{1}{I} \int 2 e^{x^{3}} I d x=(2 x-C) e^{x^{3}} \quad(-C \text { arbitrary })
$$

3. Answer (b).

$$
-\int \frac{d y}{y^{2}}=\int \cos x d x \quad \rightarrow \quad \frac{1}{y}=C+\sin x
$$

But $y(0)=1$ and so $y=(1+\sin x)^{-1}$.
4. Answer (a).

$$
\operatorname{Tr} y y_{p}=d \sin x \quad \rightarrow \quad 48 d \sin x=96 \sin x \quad \rightarrow \quad d=2
$$

5. Answer (d).

$$
\text { Aux. Eq.: } \quad m^{2}=-49 \quad \rightarrow \quad y_{h}=A \cos (7 x-B) \quad(-B \text { arbitrary })
$$

Part II:

1. Treating the ODE as separable:

$$
\int \frac{d y}{1+y}=\int\left(x^{2}-1\right) d x \quad \rightarrow \quad \ln |1+y|=A+\frac{x^{3}}{3}-x \quad \rightarrow \quad y=C \exp \left(\frac{x^{3}}{3}-x\right)-1
$$

with $C= \pm e^{A}$.
Treating the ODE as linear: the integrating factor is

$$
I=\exp \int\left(1-x^{2}\right) d x=e^{x-x^{3} / 3}
$$

Hence

$$
y=\frac{C}{I}+\frac{1}{I} \int I\left(x^{2}-1\right) d x=C e^{x-x^{3} / 3}-e^{x-x^{3} / 3} \int\left(1-x^{2}\right) e^{x-x^{3} / 3} d x=C e^{x-x^{3} / 3}-e^{x-x^{3} / 3} \int e^{u} d u
$$

with $u=x-x^{3} / 3$. Hence

$$
y=C e^{x-x^{3} / 3}-1
$$

2. For the homogeneous solutions, we solve the auxiliary equation,

$$
m^{2}+8 m+17=(m+4)^{2}+1=0 \quad \rightarrow \quad m=-4 \pm i
$$

Hence the homogeneous solutions are

$$
y_{h}=(A \cos x+B \sin x) e^{-4 x}
$$

As a trial particular solution we pose $y_{p}=\left(d_{1} x+d_{2}\right) e^{-4 x}$. Plugging this into the ODE gives

$$
\left(16 d_{1} x+16 d_{2}-8 d_{1}\right) e^{-4 x}+8\left(d_{1}-4 d_{1} x-4 d_{2}\right) e^{-4 x}+17\left(d_{1} x+d_{2}\right) e^{-4 x}=x e^{-4 x}
$$

which imply that $d_{1}=1$ and $d_{2}=0$. We then arrive at the general solution

$$
y=(A \cos x+B \sin x) e^{-4 x}+x e^{-4 x}
$$

Had the RHS been $e^{-4 x} \sin x$ (which is one of the homogeneous solutions), we should try

$$
y_{p}=x e^{-4 x}\left(d_{1} \sin x+d_{2} \cos x\right)
$$

(Although this is not needed, one can plug this into the ODE and match up terms, to find that $d_{1}=0$ and $d_{2}=\frac{1}{2}$.)

