
Math 257/316: Assignment 7

Due Nov 21, in class

Tiger Theory: The eminent biologist, Professor Lurv, derives a model for the colour of the
coat of a tiger. He describes this in terms of a pigment variable u(x, t), for which u = 1 corresponds
to orange, u = 0 to grey and u = −1 to black. The model is the PDE,

ut = αu − u3 + uxx, 0 ≤ x ≤ 40π,

u(0, t) = u(40π, t) = 0, u(x, 0) = 10−2 sin(x/2) + ε(x − 20π),

where α and ε are parameters.

(a) Assume that u is small so that the cubic term u3 can be neglected, leaving ut = αu + uxx.
Solve this simpler PDE by the method of separation of variables using the initial and boundary
values above. For ε = 0, use your solution of Lurv’s model to suggest why tigers have α = 1 but
mice have α = −1. Explain what happens if you try to use separation of variables when u is not
small and the cubic term remains in the PDE.

(b) Again take ε = 0, but now allow u to be larger and retain the cubic term in the PDE. Write
a finite difference scheme to solve the problem numerically. Do this for N = 200, ∆t = 0.1, α = 1
and 0 ≤ t ≤ 100 to demonstrate how Lurv’s model does indeed predict that an orange/black stripe
pattern appears By halving the time step and number of spatial grid points, demonstrate explicitly
that your solution is accurate. Show that numerical instability appears if the time step is doubled
and show how this is consistent with a violation of the stability criterion ∆t < (∆x)2/2.

(c) Take ε = 2.5×10−5. What happens now to your numerical solution? What do you conclude
about the suitability of Lurv’s model for describing tiger stripes?

(d) For t = 1, compare your numerical solutions from (b) and (c) with the analytical solution
from (a), truncating the Fourier series after a suitable number of terms.



Solution

(a) Separation of variables with u(x, t) = T (t)X(x) furnishes

T ′ = (α − λ)T, X ′′ = −λX.

where λ is a separation constant. Imposing X(0) = X(40π) = 0 implies that X = sin(nx/40) and
λ = n2/402. Hence
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For the initial condition provided,
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For ε = 0, the solution takes the form of a sinusoidal pattern that grows exponentially if α = 1,
or decays exponentially if α = −1. Hence, a spatial pattern appears for α = 1, suggesting that u
will grow towards ±1 and stripes might result, as for a tiger. If α = −1, u → 0 for t → ∞, and so
the coat become grey, as for a mouse. The PDE cannot be separated into terms depending only
on either x or t when the cubic term is present, and so the method of separation of variables fails.

(b) Let uk
n = un(k∆t) = u(xn, k∆t) be the solution at the nth position on a grid of N points

after k timesteps of duration ∆t. The discretization of the PDE is

uk+1
n = uk

n + ∆t

[

uk
n − (uk

n)3 +
(uk
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n−1 − 2uk

n)

(∆x)2

]

where ∆x = 40π/(N + 1) is the spatial grid interval, xn = n∆x, and uk
0 = uk

N+1 = 0 in view
of the boundary conditions. See figure 1 for the numerical solution for N = 200 and ∆t = 0.1.
For comparison, figure 3 shows solutions with N = 100 and ∆t = 0.05, and another one with
∆t = 0.2 that suffers numerical instability. The solutions not suffering this instability agree with
one another, demonstrating the fidelity of the computations. For the numerically unstable solution,
(∆x)2/2 = 0.1974 which is smaller than ∆t and violates the stability condition.

(c) See figure 2; with ε 6= 0, the stripes start to merge into a wider pattern with a single band
of black and one of orange. This is not very tiger-like, and so Lurv’s model is not so good.

(d) See figures 1 and 2.



Numerical solution computed with 200 mesh points; ε = 0
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Figure 1: Numerical solutions for ε = 0. Top panel: u(x, t) as a colormap on the (x, t)−plane.
Middle: snapshots of u(x, t) for t = 0, 5, 10, ... 100. Bottom: A comparison of the numerical
solution at t = 1 (solid line) with the separation of variables solution (dots).



Numerical solution computed with 200 mesh points; ε 6= 0
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Figure 2: Numerical solutions for ε = 0. Top panel: u(x, t) as a colormap on the (x, t)−plane.
Middle: snapshots of u(x, t) for t = 0, 5, 10, ... 100. Bottom: A comparison of the numerical
solution at t = 1 (solid line) with the separation of variables solution (dots), truncating tha Fourier
series after 50 terms.

100 mesh points and ∆t = 0.1; ε = 0
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200 mesh points and ∆t = 0.05; ε = 0
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200 mesh points and ∆t = 0.2; ε = 0
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Figure 3: Top: Numerical solutions with half the number of gridpoints in x, and half the time step,
∆t. Bottom: numerical instability for ∆t = 0.05 and 200 gridpoints.


