Math 257/316: Assignment 5

Due Oct 24, in class

Solve the diffusion problems,
(a) $\quad u_{t}=u_{x x}, \quad u(x, 0)=0, \quad u(0, t)=0 \quad u(\pi, t)=1$.
(b) $\quad u_{t}=u_{x x}+t \sin 2 x, \quad u(x, 0)=0, \quad u(0, t)=u(\pi, t)=0$.
(c) $\quad u_{t}=u_{x x}-\frac{x}{\pi}, \quad u(x, 0)=0, \quad u(0, t)=u(\pi, t)=0$.
(d) $\quad u_{t}=u_{x x}, \quad u(x, 0)=0, \quad u(0, t)=0 \quad u(\pi, t)=t$.

Solutions

(a) Let

$$
u(x, t)=U(x, t)+\frac{x}{\pi}
$$

Then $U(x, t)$ solves

$$
U_{t}=U_{x x}, \quad U(x, 0)=-\frac{x}{\pi}, \quad U(0, t)=U(\pi, t)=0
$$

which has solution

$$
U(x, t)=\sum_{n=1} b_{n} e^{-n^{2} t} \sin n x, \quad b_{n}=\frac{2}{\pi} \int_{0}^{\pi} U(x, 0) \sin n x d x=\frac{2(-1)^{n}}{\pi n}
$$

(b) Put

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n}(t) \sin n x
$$

The PDE is

$$
\sum_{n=1}^{\infty}\left(\dot{b_{n}}+n^{2} b_{n}\right) \sin n x=t \sin 2 x
$$

Given $b_{n}(0)=0$ by the initial condition, we may take $b_{n}(t)=0$ for $n \neq 2$ and

$$
\dot{b}_{2}+4 b_{2}=t
$$

Hence

$$
u(x, t)=\frac{1}{16}\left(4 t-1+e^{-4 t}\right) \sin 2 x .
$$

(c) Again we use a Fourier sin series in x for $u(x, t)$. The PDE becomes

$$
\sum_{n=1}^{\infty}\left(\dot{b_{n}}+n^{2} b_{n}\right) \sin n x=-\frac{x}{\pi} .
$$

Multiply by $\sin m x$ and integrate, using $\int_{0}^{\pi} \sin (n x) \sin (m x) d x=0$ if $n \neq m$, or $\pi / 2$ if $n=m$:

$$
\dot{b}_{m}+m^{2} b_{m}=-\frac{2}{\pi^{2}} \int_{0}^{\pi} x \sin m x d x=\frac{2(-1)^{m}}{\pi m} .
$$

Hence, given $b_{m}(0)=0$ by the initial condition, $b_{m}(t)=2(-1)^{m}\left(1-e^{-m^{2} t}\right) /\left(\pi m^{3}\right)$ and

$$
u(x, t)=\sum_{n=1} \frac{2(-1)^{n}}{\pi n^{3}}\left(1-e^{-n^{2} t}\right) \sin n x
$$

(d) Now we set

$$
u(x, t)=U(x, t)+\frac{x t}{\pi}
$$

to obtain

$$
U_{t}=U_{x x}-\frac{x}{\pi}, \quad U(0, t)=U(\pi, 0)=0, \quad U(x, 0)=0
$$

i.e. $U(x, t)$ solves the same problem as in (c), so the solution is

$$
u(x, t)=\frac{x t}{\pi}+\sum_{n=1} \frac{2(-1)^{n}}{\pi n^{3}}\left(1-e^{-n^{2} t}\right) \sin n x
$$

