
Math 257/316: Midterm Exmination, 9:00-9:48am, October 15th

Closed book exam. Answer both questions. Adequately justify each step you take.

1. Find a lower bound on the radius of convergence of the series solution,

y(x) =
∞
∑

n=0

anxn,

to the ordinary differential equation,

(1 − x2)y′′ − 2xy′ + λy = 0,

where λ is a constant parameter. Find the recurrence relation satisfied by the coefficients, an.
Show that there is a solution with the form of a polynomial of finite degree for certain values of λ.
Give an explicit solution with this form for λ = 12; what is the other independent solution for this
value of λ?

Solution:
The series solution stated is that about the point x = 0, which is an ordinary point of the

ODE. The ratios of coefficients are −2x/(1−x2) and λ/(1−x2), implying that x = ±1 are singular
points, which can limit the radius of convergence ρ of the series solution about x = 0. Hence ρ ≥ 1.
2 pt.

Plugging the series into the ODE:
∞
∑

n=0

{

n(n− 1)anxn−2 + [λ − n(n + 1) anxn
}

= 0

Replacing n with m + 2 in the first term and n with m in the second (and adjusting the lower
limits of the sums):

∞
∑

m=0

{(m + 2)(m + 1)am+2 + [λ − m(m + 1) am}xm = 0

Setting the coefficient of xm to zero furnishes the recursion relation,

(m + 1)(m + 2)am+2 = −[λ − m(m + 1)]am. 4pt.

The two independent solutions of the ODE therefore split up into a series of even powers, with
a1 = 0 and a0 6= 0, and a series of odd powers, with a1 6= 0 and a0 = 0. If λ = n(n + 1) for some
integer n, then 0 = an+2 = an+4 = an+6 = .... Thus, one of the two independent series solutions
will terminate at the power n, leaving a finite-degree polynomial; the other solution remains an
infinite series. 4 pt.

For λ = 12, the odd power series will terminate for n = 3. Explicitly, a3 = −5a1/3, so the
polynomial solution is

y(x) = a1

(

x −
5

3
x3

)

. 2pt.

The other solution is the (infinite) even-power series with

y(x) =
∞
∑

k=0

a2kx2k, am+2 = −
[12− m(m + 1)]am

(m + 1)(m + 2)
,

and beginning with a0 6= 0. Explicitly,

y(x) = a0

(

1 − 6x2 + 3x4 + ...
)

. 2pt.
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2. Using the method of separation of variables, derive a solution to

ut = κuxx, 0 ≤ x ≤ 2π, u(0, t) = u(2π, t) = 0, u(x, 0) = f(x),

giving an explicit formula for any coefficients that appear. What theorem provides a mathematical
justification for your solution? Give a specific solution for f(x) = x.

Solution:
We pose u(x, t) = X(x)T (t). The PDE can be re-arranged into

X ′′

X
=

T ′

κT
.

That is, a function of x equal to a function of t, which can only be true if both equal a constant.
Let this “separation” constant be −λ2. Hence,

X“ + λ2X = T ′ + κλ2T = 0,

with solutions
X = A cosλx + B sinλx and T = Ce−κλ2t,

for some constants A, B and C. The boundary conditions in x imply that X(0) = X(2π) = 0 and
so A = 0 and B sin(2πλ) = 0. Hence, λ = n/2 for n = 1, 2, ... (the choices B = 0 and n = 0 are
trivial). 6 pt.

We then set BC = bn and formulate a general solution in terms of the sum,

u(x, t) =
∞
∑

n=1

bne−κn2t/4 sin(nx/2). 2pt.

We next apply the initial condition, u(x, 0) = f(x):

f(x) =
∞
∑

n=1

bn sin(nx/2)

Multiplying by sin(mx/2) (with m an integer) and integrating from x = 0 to 2π, then using

∫ L

−L

sin(nx/2) sin(mx/2)dx = 2

∫ L

0

sin(nx/2) sin(mx/2)dx =

{

L if n = m,
0 otherwise,

implies that

bm =
1

π

∫ 2π

0

f(x) sin(mx/2)dx.

Fourier’s theorem, that a periodic function can be expanded in its Fourier series, justifies mathe-
matically that the solution of the PDE can be expressed in this form: if we suitably extend our
solution to −2π ≤ x ≤ 2π and then periodically repeat it, we are dealing with an odd periodic
function and may therefore express it in terms of a Fourier sin series. 5 pt.

For f(x) = x, we may integrate by parts to find that bm = 4(−1)m+1/m. Hence,

u(x, t) =
∞
∑

n=1

4

n
(−1)n+1e−κn2t/4 sin(nx/2). 3pt.
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