Math 257/316: Midterm Exmination, 9:00-9:48am, October 15"
Closed book exam. Answer both questions. Adequately justify each step you take.

1. Find a lower bound on the radius of convergence of the series solution,

o0
y(fl?) = Z anxna
n=0
to the ordinary differential equation,
(1 —22)y" — 22y + My =0,

where A is a constant parameter. Find the recurrence relation satisfied by the coefficients, a.,.
Show that there is a solution with the form of a polynomial of finite degree for certain values of .
Give an explicit solution with this form for A = 12; what is the other independent solution for this
value of \?

Solution:

The series solution stated is that about the point x = 0, which is an ordinary point of the
ODE. The ratios of coefficients are —2x/(1 —22) and \/(1 —2z?), implying that x = £1 are singular
points, which can limit the radius of convergence p of the series solution about = 0. Hence p > 1.
2 pt.

Plugging the series into the ODE:

Z {n(n—1)a,z"? + A —n(n+1) a,2"} =0
n=0

Replacing n with m + 2 in the first term and n with m in the second (and adjusting the lower
limits of the sums):

o
Z {(m+2)(m+Dapmi2+[A—m(m+1)a,}x™ =0
m=0
Setting the coefficient of ™ to zero furnishes the recursion relation,
(m+1)(m+2)ami2 = —[]A —m(m + 1)]an,. 4pt.
The two independent solutions of the ODE therefore split up into a series of even powers, with
a; = 0 and ap # 0, and a series of odd powers, with a; # 0 and ag = 0. If A = n(n + 1) for some
integer n, then 0 = ap42 = aptq4 = an46 = .... Thus, one of the two independent series solutions
will terminate at the power n, leaving a finite-degree polynomial; the other solution remains an
infinite series. 4 pt.
For A = 12, the odd power series will terminate for n = 3. Explicitly, a3 = —5a1/3, so the
polynomial solution is

)
y(r) = a1 <:E - §x3> . 2pt.

The other solution is the (infinite) even-power series with
[12 — m(m + 1)]am,
(m+1)(m+2) ’

o0
y(z) = Za2k$2k7 Umt2 = —
k=0

and beginning with a¢ # 0. Explicitly,
y(z) = ag (1 — 62>+ 32" + ...). 2pt.



2. Using the method of separation of variables, derive a solution to
Up = Klgy, 0 <z <2m, u(0,t) = u(2m,t) =0, u(z,0) = f(z),

giving an explicit formula for any coefficients that appear. What theorem provides a mathematical
justification for your solution? Give a specific solution for f(z) = x.

Solution:
We pose u(z,t) = X(x)T(t). The PDE can be re-arranged into

X/I T/

X kT
That is, a function of x equal to a function of ¢, which can only be true if both equal a constant.
Let this “separation” constant be —\2. Hence,

X4+ XX =T + kN°T =0,

with solutions )
X = Acos Ax + Bsin \x and T =Ce ™,

for some constants A, B and C. The boundary conditions in z imply that X (0) = X (27) = 0 and
so A =0 and Bsin(27A) = 0. Hence, A = n/2 for n = 1, 2, ... (the choices B = 0 and n = 0 are
trivial). 6 pt.

We then set BC' = b,, and formulate a general solution in terms of the sum,

u(z,t) = Z be "t/ sin(nz/2). 2pt.
n=1
We next apply the initial condition, u(z,0) = f(x):
flz) = Z by, sin(nx/2)
n=1

Multiplying by sin(ma/2) (with m an integer) and integrating from x = 0 to 2, then using

Lif n=m,
0 otherwise,

/L sin(nx/2) sin(mz/2)dz = 2 /OL sin(nx/2) sin(mzx/2)dz = {

—L

implies that
1 27

by = — (z) sin(ma/2)dx.
T Jo
Fourier’s theorem, that a periodic function can be expanded in its Fourier series, justifies mathe-
matically that the solution of the PDE can be expressed in this form: if we suitably extend our
solution to —27 < x < 27 and then periodically repeat it, we are dealing with an odd periodic
function and may therefore express it in terms of a Fourier sin series. 5 pt.
For f(x) = =, we may integrate by parts to find that b,, = 4(—1)™*!/m. Hence,

u(x,t) = Z

n=1

(—1)" e s /4gin(ng/2).  3pt.
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