Math 257/316: Midterm Exmination, 9:00-9:48am, October $15^{\text {th }}$

Closed book exam. Answer both questions. Adequately justify each step you take.

1. Find a lower bound on the radius of convergence of the series solution,

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

to the ordinary differential equation,

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\lambda y=0
$$

where λ is a constant parameter. Find the recurrence relation satisfied by the coefficients, a_{n}. Show that there is a solution with the form of a polynomial of finite degree for certain values of λ. Give an explicit solution with this form for $\lambda=12$; what is the other independent solution for this value of λ ?

Solution:

The series solution stated is that about the point $x=0$, which is an ordinary point of the ODE. The ratios of coefficients are $-2 x /\left(1-x^{2}\right)$ and $\lambda /\left(1-x^{2}\right)$, implying that $x= \pm 1$ are singular points, which can limit the radius of convergence ρ of the series solution about $x=0$. Hence $\rho \geq 1$. 2 pt.

Plugging the series into the ODE:

$$
\sum_{n=0}^{\infty}\left\{n(n-1) a_{n} x^{n-2}+\left[\lambda-n(n+1) a_{n} x^{n}\right\}=0\right.
$$

Replacing n with $m+2$ in the first term and n with m in the second (and adjusting the lower limits of the sums):

$$
\sum_{m=0}^{\infty}\left\{(m+2)(m+1) a_{m+2}+\left[\lambda-m(m+1) a_{m}\right\} x^{m}=0\right.
$$

Setting the coefficient of x^{m} to zero furnishes the recursion relation,

$$
(m+1)(m+2) a_{m+2}=-[\lambda-m(m+1)] a_{m} . \quad \text { 4pt. }
$$

The two independent solutions of the ODE therefore split up into a series of even powers, with $a_{1}=0$ and $a_{0} \neq 0$, and a series of odd powers, with $a_{1} \neq 0$ and $a_{0}=0$. If $\lambda=n(n+1)$ for some integer n, then $0=a_{n+2}=a_{n+4}=a_{n+6}=\ldots$. Thus, one of the two independent series solutions will terminate at the power n, leaving a finite-degree polynomial; the other solution remains an infinite series. 4 pt .

For $\lambda=12$, the odd power series will terminate for $n=3$. Explicitly, $a_{3}=-5 a_{1} / 3$, so the polynomial solution is

$$
y(x)=a_{1}\left(x-\frac{5}{3} x^{3}\right) . \quad \mathbf{2 p t} .
$$

The other solution is the (infinite) even-power series with

$$
y(x)=\sum_{k=0}^{\infty} a_{2 k} x^{2 k}, \quad a_{m+2}=-\frac{[12-m(m+1)] a_{m}}{(m+1)(m+2)}
$$

and beginning with $a_{0} \neq 0$. Explicitly,

$$
y(x)=a_{0}\left(1-6 x^{2}+3 x^{4}+\ldots\right) . \quad \mathbf{2 p t}
$$

2. Using the method of separation of variables, derive a solution to

$$
u_{t}=\kappa u_{x x}, \quad 0 \leq x \leq 2 \pi, \quad u(0, t)=u(2 \pi, t)=0, \quad u(x, 0)=f(x),
$$

giving an explicit formula for any coefficients that appear. What theorem provides a mathematical justification for your solution? Give a specific solution for $f(x)=x$.

Solution:

We pose $u(x, t)=X(x) T(t)$. The PDE can be re-arranged into

$$
\frac{X^{\prime \prime}}{X}=\frac{T^{\prime}}{\kappa T} .
$$

That is, a function of x equal to a function of t, which can only be true if both equal a constant. Let this "separation" constant be $-\lambda^{2}$. Hence,

$$
X^{\prime \prime}+\lambda^{2} X=T^{\prime}+\kappa \lambda^{2} T=0
$$

with solutions

$$
X=A \cos \lambda x+B \sin \lambda x \quad \text { and } \quad T=C e^{-\kappa \lambda^{2} t}
$$

for some constants A, B and C. The boundary conditions in x imply that $X(0)=X(2 \pi)=0$ and so $A=0$ and $B \sin (2 \pi \lambda)=0$. Hence, $\lambda=n / 2$ for $n=1,2, \ldots$ (the choices $B=0$ and $n=0$ are trivial). $6 \mathbf{p t}$.

We then set $B C=b_{n}$ and formulate a general solution in terms of the sum,

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-\kappa n^{2} t / 4} \sin (n x / 2) . \quad \mathbf{2 p t} .
$$

We next apply the initial condition, $u(x, 0)=f(x)$:

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin (n x / 2)
$$

Multiplying by $\sin (m x / 2)$ (with m an integer) and integrating from $x=0$ to 2π, then using

$$
\int_{-L}^{L} \sin (n x / 2) \sin (m x / 2) d x=2 \int_{0}^{L} \sin (n x / 2) \sin (m x / 2) d x=\left\{\begin{array}{l}
L \text { if } n=m \\
0 \text { otherwise }
\end{array}\right.
$$

implies that

$$
b_{m}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin (m x / 2) d x .
$$

Fourier's theorem, that a periodic function can be expanded in its Fourier series, justifies mathematically that the solution of the PDE can be expressed in this form: if we suitably extend our solution to $-2 \pi \leq x \leq 2 \pi$ and then periodically repeat it, we are dealing with an odd periodic function and may therefore express it in terms of a Fourier sin series. $\mathbf{5}$ pt.

For $f(x)=x$, we may integrate by parts to find that $b_{m}=4(-1)^{m+1} / m$. Hence,

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{4}{n}(-1)^{n+1} e^{-\kappa n^{2} t / 4} \sin (n x / 2) . \quad \mathbf{3 p t}
$$

