Math 257/316: Assignment 4

Due Oct 8, in class

1. Using the method of separation of variables, solve the PDEs
(a) $\quad u_{t}=u_{x x}, \quad u(0, t)=u(\pi, t)=0, u(x, 0)=\sin 3 x+2 \sin x+6 \sin 8 x$
(b) $\quad u_{t}=u_{x x}, \quad u(0, t)=u(\pi, t)=0, u(x, 0)=x(\pi-x)$
(c) $\quad u_{t}=u_{x x}, \quad u(0, t)=0, u_{x}(L, t)=0, u(x, 0)=f(x)$
(d) $\quad u_{t t}=c^{2} u_{x x}, \quad u(0, t)=u(L, t)=0, u(x, 0)=f(x), u_{t}(x, 0)=g(x)$

In each case, write the coefficients in the solution either explicitly or in terms of integrals over the initial conditions.

Solutions

We substitute $u(x, t)=X(x) T(t)$ into the PDEs, re-arrange, introduce a separation constant λ, and solve the resulting ODEs for $X(x)$ and $T(t)$, determining the possible values of λ along the way.
(a) We find $X=\sin n \pi x$ and $T=e^{-n^{2} t}$. The general solution is

$$
u=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} t} \sin n x
$$

With the stated initial condition, we may take $b_{1}=2, b_{3}=1$ and $b_{8}=6$ and all other $b_{n}=0$. Hence

$$
u(x, t)=e^{-9 t} \sin 3 x+2 e^{-t} \sin x+6 e^{-64 t} \sin 8 x
$$

(b) We find the same general solution as in (a). We need to impose

$$
x(\pi-x)=\sum_{n=1} b_{n} \sin n x
$$

The coefficient are determined as follows (using integration by parts):

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} x(\pi-x) \sin n x d x=\frac{4}{\pi n^{2}}\left[1-(-1)^{n}\right]
$$

(c) We find $X=\sin \sqrt{\lambda_{n}} x$ and $T=e^{-\lambda_{n} t}$, where λ_{n} must satisfy $\sqrt{\lambda_{n}} \cos \left(\sqrt{\lambda_{n}} L\right)=0$. i.e. $\lambda_{n}=(2 n+1)^{2} \pi^{2} /\left(4 L^{2}\right)$. The general solution is

$$
u=\sum_{n=1}^{\infty} b_{n} e^{-\lambda_{n} t} \sin \frac{(2 n+1) \pi x}{2 L}
$$

Imposing the initial condition gives

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{(2 n+1) \pi x}{2 L} d x
$$

(d) We find $X=\sin (n \pi x / L)$ and $T=\sin (n \pi c t / L)$ or $\cos (n \pi c t / L)$. The general solution is

$$
u=\sum_{n=1}^{\infty} \sin \frac{n \pi x}{L}\left(b_{n} \sin \frac{n \pi c t}{L}+B_{n} \cos \frac{n \pi c t}{L}\right)
$$

The initial conditions require that

$$
\begin{aligned}
& B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x \\
& b_{n}=\frac{2}{n \pi c} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x
\end{aligned}
$$

