Math 257/316: Assignment 3

Due Sep 29, in class

1. For the ODE

$$
x^{2}(1-x)^{3} y^{\prime \prime}+5 x y^{\prime}+4 y=0
$$

find all the singular points and classify them as regular or irregular. For each regular singular point $x=x_{0}$ determine the exponent r of the Frobenius solution, $y=\left(x-x_{0}\right)^{r} \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$.
2. Verify that $x=0$ is a regular singular point of the ODE

$$
9 x^{2} y^{\prime \prime}+9 x y^{\prime}+(x-1) y=0
$$

Determine the recurrence relation satisfied by the coefficients of the Frobenius solution about the singular point for both independent solutions, and hence determine a_{1} and a_{2} in terms of a_{0} for both these solutions.
3. Using finite differences on a spatial grid of N points, turn the PDE

$$
u_{t}=\sin (2 t) \sin \left(\frac{2 \pi x}{L}\right)-u+u_{x x}-c u_{x}, \quad u(0, t)=u(L, t)=0, \quad u(x, 0)=0
$$

into a set of coupled ODEs in time for $u_{n}(t)=u\left(x_{n}, t\right)$, where x_{n} denotes the position of the $n^{t h}$ gridpoint in space. Be specific about the locations of the gridpoints and the ODEs for $n=1$ and N. Finite difference the time derivative to reduce the ODEs to an algebraic problem for $u_{n}^{k}=u\left(x_{n}, k \Delta t\right)$, where Δt is the time step and $k=1,2, \ldots$ Extra credit: with a computer, solve the problem numerically upto $t=10$ for $L=10$ and $c=3$ (provide a plot showing the space-time evolution of the solution).

Solutions

1. The ratios of the coefficients of the ODE are

$$
\frac{5}{x(1-x)^{3}}, \frac{4}{x^{2}(1-x)^{3}}
$$

Thus, $x=0$ and $x=1$ are singular points.
We now consider the scaled ratios

$$
x \frac{5}{x(1-x)^{3}}, x^{2} \frac{4}{x^{2}(1-x)^{3}} \quad \text { and } \quad(x-1) \frac{5}{x(1-x)^{3}},(x-1)^{2} \frac{4}{x^{2}(1-x)^{3}}
$$

The first pair is regular at $x=0$, indicating that this is a regular singular point; the second pair still diverge at $x=1$, and so this point is not regular.

To determine r, we consider the first term of the Frobenius solution: $y=a_{0}\left(x-x_{0}\right)^{r}+\ldots$ Plugging this into the ODE and isolating the lowest power of $\left(x-x_{0}\right)$ gives,

$$
0=a_{0}\left[r(r-1) x^{r}+5 r x^{r}+4\right]+\ldots
$$

That is, $r^{2}+4 r+4=0$ or $r=-2$ (implying that the Frobenius solution would contain a logarithm). Alternatively, we may compare the ODE with the Euler equation $x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0$ and plug in $y=A x^{r}$ to find the same equation for r.
2. We introduce the Frobenius solution $y=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}$ into the ODE:

$$
0=\sum_{n=0}^{\infty}\left[9(r+n)^{2}-1\right] a_{n} x^{r+n}+\sum_{n=0}^{\infty} a_{n} x^{r+n+1}
$$

In the first sum, we replace n by $m=n$; in the second. we set $m=n+1$. This gives

$$
0=\left(9 r^{2}-1\right) a_{m} x^{r}+\sum_{m=1}^{\infty}\left\{\left[9(r+m)^{2}-1\right] a_{m} x^{r+m}+a_{m-1} x^{r+m}\right\}
$$

Thus, $r= \pm 1 / 3$ and $a_{m}=-a_{m-1} /[9 m(m+2 r)]$.

$$
r=\frac{1}{3}: a_{1}=-\frac{a_{0}}{15}, \quad a_{2}=-\frac{a_{1}}{48}=\frac{a_{0}}{720}, \quad r=-\frac{1}{3}: a_{1}=-\frac{a_{0}}{3}, a_{2}=-\frac{a_{1}}{24}=\frac{a_{0}}{72}
$$

3. Let $\Delta x=1 /(N+1)$ and set $x_{n}=n \Delta x$ for $n=1,2, \ldots, N$. Then,

$$
\dot{u}_{n} \approx \sin (2 t) \sin \left(\frac{2 \pi x_{n}}{L}\right)-u_{n}+\frac{\left(u_{n+1}+u_{n-1}-2 u_{n}\right)}{(\Delta x)^{2}}-\left(u_{n+1}-u_{n-1}\right) \frac{c}{2 \Delta x} .
$$

For $n=1$ and $n=N$, we may set $u_{0}=u_{N+1}=0$ in view of the boundary conditions. Putting $u_{t} \approx[u(x, t+\Delta t)-u(x, t)] / \Delta t$, and using $u_{n}^{k}=u\left(x_{n}, k \Delta t\right)$, we may then write
$\left.u_{n}^{k+1} \approx u_{n}^{k}+\left[\sin (2 k \Delta t) \sin \left(\frac{2 \pi x_{n}}{L}\right)\right)-u_{n}^{k}\right] \Delta t+\left(u_{n+1}^{k}+u_{n-1}^{k}-2 u_{n}^{k}\right) \frac{\Delta t}{(\Delta x)^{2}}-\left(u_{n+1}^{k}-u_{n-1}^{k}\right) \frac{c \Delta t}{2 \Delta x}$.

