Coursework 3

The exercises here follow the steps taken in lectures for PDEs in cylindrical or spherical geometry, with Bessel functions or Legendre polynomials as solutions. i.e. the warm-up problems were done in class...

(1) Consider the PDE

\[u_{tt} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial u}{\partial \theta} \right), \quad 0 \leq r \leq 1 \quad 0 \leq \theta \leq \pi \]

with boundary condition, \(u(1, \theta, t) = 0 \). Use separation of variables to demonstrate that the solution of the initial-value problem, \(u(r, \theta, 0) = 0 \) and \(u_t(r, \theta, 0) = g(r, \theta) \), can be written as the superposition of normal modes,

\[u = \sum_{j=1}^{\infty} \sum_{n=0}^{\infty} A_{nj} \sin(\omega_{nj} t) F_j(r) G_n(\cos \theta), \]

where you should determine the functions \(F_j(r) \) and \(G_n(\cos \theta) \), along with the normal-mode frequency \(\omega_{nj} \).

Provide an expression for the normal-mode amplitudes \(A_{nj} \) in terms of integrals over the initial condition \(g(r, \theta) \). Make this expression as explicit as you can by using the helpful information given below and proving that

\[\frac{1}{2} [J_2^2(k) + J_0^2(k)] = \int_0^1 r J_0^2(kr) dr. \]

Using Legendre’s equation, show that

\[\int_{-1}^{1} P_0(x) dx = 2 \quad \text{and} \quad \int_{-1}^{1} P_n(x) dx = 0 \quad \text{if} \quad n > 0. \]

Hence, if

\[\int_0^\pi g(r, \theta) \sin \theta \, d\theta = 0, \]

argue that the sum over \(n \) starts with \(n = 1 \).

(2) The Schrödinger equation and Hermite polynomials: Consider the PDE,

\[i\phi_t = \phi_{xx} - V(x)\phi, \]

where \(V(x) \) is a prescribed potential function and \(-\infty < x < \infty\). \(\phi(x, t) \) is known as the wavefunction. The separation of variables, \(\phi = e^{iE t} X(x) \), reduces the PDE to the eigenvalue problem,

\[X'' + (E - V) X = 0, \]

where \(X(x) \to 0 \) for \(x \to \pm\infty \).

(a) For the potential of the simple harmonic oscillator, \(V(x) = x^2/4 \), introduce the transformation, \(X = e^{-x^2/4} y(x) \), to show that the solutions satisfy Hermite’s ODE (see below).

(b) By posing the polynomial solution, \(y(x) = \sum_{m=0}^{\infty} a_m x^m \), obtain a recurrence relation for the coefficients, \(a_m \), and hence determine for what values of \(E \) the series terminates.

(c) Calculate \(H_n(x) \) for \(n = 2, 3, \ldots, 5 \), using the recurrence relation of (b). Verify your results using the recursion relation for the polynomials themselves (given below), and Rodrigues formula.

(d) By writing Hermite’s ODE in standard Sturm-Liouville form, establish that the weight function is indeed \(\sigma = e^{-x^2/2} \); what is \(p(x) \) and how is \(E \) related to the Sturm-Liouville eigenvalue? What kind of boundary conditions are being imposed on the Sturm-Liouville problem for \(y(x) \)?
(e) Evaluate the integral
\[\int_{-\infty}^{\infty} H_n(x) \frac{d^n}{dx^n} (e^{-x^2/2}) dx \]
by repeatedly integrating by parts. Hence verify the integral relation at the bottom of the page, given Rodrigues formula.

(f) Collect together the previous results to write down a solution for the wavefunction \(\phi(x,t) \), when the initial condition is \(\phi(x,0) = f(x) \), expressing any coefficients as integrals involving the Hermite polynomials and \(f(x) \).

(g) Find the wavefunction for all time for \(\phi(x,0) = (4x^2 + x^4)e^{-x^2/4} \) and \(\phi(x,0) = e^{-x^2/4-x} \).

Helpful information:

Bessel’s equation is
\[r^2y'' + ry' + (k^2r^2 - m^2)y = 0, \]
and has the solution, \(y(r) = J_m(kr) \), which is regular at \(r = 0 \). \(J_0(z) \) and \(J_1(z) \) satisfy the relations
\[\frac{d}{dz}J_0(z) = -J_1(z), \quad \frac{d}{dz}[zJ_1(z)] = zJ_0(z). \]

Legendre’s equation is
\[\frac{d}{dx} \left[(1-x^2) \frac{dy}{dx}\right] + \lambda y = 0; \]
the solutions that are regular at \(x = \pm 1 \) are \(\lambda = n(n+1) \) and \(y = P_n(x) \) (the Legendre polynomial of degree \(n \)), with \(n = 0, 1, 2, ... \) Also, \(P_n(1) = 1 \) and
\[\int_{-1}^{1} P_n^2(x)dx = \frac{2}{1+2n}. \]

A summary of the properties of Hermite polynomials:

Hermite’s ODE: \(y'' - xy' + \lambda y = 0 \)

Weight function: \(\sigma(x) = e^{-x^2/2} \)

Interval: \(-\infty < x < \infty\)

Regular solutions: \(y(x) = H_n(x) \) and \(\lambda = n \)

Normalization: The leading coefficient of the polynomial is unity. i.e. \(H_n(x) = x^n + ... \), so \(H_0(x) = 1 \) and \(H_1(x) = x \), etc.

Recurrence relation: \(H_{n+1} - xH_n + nH_{n-1} = 0 \)

Rodrigues formula:
\[H_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} (e^{-x^2/2}). \]

Integral relation:
\[\int_{-\infty}^{\infty} [H_n(x)]^2 e^{-x^2/2} dx = n!\sqrt{2\pi}. \]