Math 256. Final

Name:

No formula sheet, books or calculators! Include this exam sheet with your answer booklet!

Part I

Circle what you think is the correct answer. +3 for a correct answer, -1 for a wrong answer, 0 for no answer.

1. The ODE $3y' + y^{-2}e^x = y^{-2}$ with y(0) = 0 has the solution,

(a)
$$e^x - 1 - x^3 \sin x$$
 (b) $e^x - e^{-x} - x^2 e^x$ (c) $(e^x - 1 - x^3)^3 + x e^{-2x}$
(d) $-(e^x - 1 - x)^{1/3}$ (e) None of the above.

2. The system

$$\mathbf{y}' = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 6 & 7 \\ 0 & 3 & 2 \end{pmatrix} \mathbf{y}$$

has the general solution,

(a)
$$\mathbf{u}_1 + \mathbf{u}_2 e^{6t} + \mathbf{u}_3 e^t$$
 (b) $\mathbf{u}_1 e^{7t} + \mathbf{u}_2 e^t + \mathbf{u}_3 e^{-2t}$ (c) $\mathbf{u}_1 + \mathbf{u}_2 e^{2t} + \mathbf{u}_3 e^{-t}$
(d) $\mathbf{u}_1 e^{-t} + \mathbf{u}_2 + \mathbf{u}_3 e^{9t}$ (e) None of the above,

for three constant vectors \mathbf{u}_1 , \mathbf{u}_2 and \mathbf{u}_3 .

3. The inverse Laplace transform of

$$\bar{y}(s) = \frac{4s}{(s^2 + 4s + 5)}$$

is

(a)
$$y(t) = 4e^{-t}\cos 2t - 2e^{-t}\sin 2t$$
, (b) $y(t) = 4e^{-2t}\cos t$, (c) $y(t) = 4e^{-t}\cos 2t$.
(d) $y(t) = 4e^{-2t}(\cos t - 2\sin t)$, (e) None of the above.

4. Which of the following is a solution to the PDE $u_{xx} + 9u_{yy} - 8u = 0$:

(a)
$$u = \cos x \sin 3y$$
 (b) $u = \cos 3x \cos 3y$ (c) $u = \cos 3x e^{y}$
(d) $u = \sin 3x \sin y$ (e) $u = \sin x e^{-y}$.

Part II

Answer in full (i.e. give as many arguments, explanations and steps as you think is needed for a normal person to understand your logic). Answer as much as you can; partial credit awarded.

1. (12 points) A couple has attraction x(t) but repulsion y(t), leading to the degree of happiness z(t), all satisfying the ODEs,

$$x' + x - y = 0$$
, $y' + 3y + 5x = 0$, $z' + 4z + xy = 0$.

Determine what happens if the relationship starts with (x(0), y(0), z(0)) = (0, 2, 0). Does happiness win out (*i.e.* z(t) remain positive for $t \to \infty$)?

2. (12 points) Write the ODEs

$$x'' = 2x + y, \quad y'' = 5x - 2y + 8\sin t,$$

as a 2 × 2 system and then find the general solution using the eigenvalues and eigenvectors of the constant matrix that appears in your system. What is special about the initial conditions x(0) = y(0) = x'(0) = 0 and y'(0) = -2?

3. (10 points) From the definition of the Laplace transform, prove that $\mathcal{L}\{y''\} = s^2 \bar{y}(s) - sy(0) - y'(0)$ and $\mathcal{L}\{f(t-a)H(t-a)\} = e^{-as}\bar{f}(s)$. Find

$$\mathcal{L}^{-1}\left\{\frac{s}{\left(s^2+2s+17\right)}\right\}$$

Using Laplace transforms, solve the ODE

$$\ddot{y} + 2\dot{y} + 17y = \delta(t - \pi)\cos t,$$

with y(0) = 1 and $\dot{y}(0) = -2$, where $\delta(t)$ is the delta-function.

4. (14 points) Solve

$$u_t = u_{xx}, \quad 0 < x < 3, \qquad u(0,t) = u(3,t) = 1, \quad u(x,0) = 0.$$

Fourier Series:

For a periodic function f(x) with period 2L, the Fourier series is

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]$$

with

$$a_{0} = \frac{1}{L} \int_{-L}^{L} f(x) \, dx, \quad a_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad b_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx.$$

Helpful trig identities:

$$\begin{aligned} \sin 0 &= \sin \pi = 0, \quad \sin(\pi/2) = 1 = -\sin(3\pi/2), \\ \cos 0 &= -\cos \pi = 1, \quad \cos(\pi/2) = \cos(3\pi/2) = 0, \\ \sin(-A) &= -\sin A, \quad \cos(-A) = \cos A, \quad \sin^2 A + \cos^2 A = 1, \\ \sin(2A) &= 2\sin A \cos A, \quad \sin(A+B) = \sin A \cos B + \cos A \sin B, \\ \cos(2A) &= \cos^2 A - \sin^2 A = 1 - 2\sin^2 A, \quad \cos(A+B) = \cos A \cos B - \sin A \sin B, \\ \sin(A+B) &+ \sin(A-B) = 2\sin A \cos B \end{aligned}$$

Useful Laplace Transforms:

 $\int_{-\infty}^{\infty} \delta(x-a) f(x) dx = f(a)$

Solutions:

Part I: (d), (d), (d), (e) Part II:

1. $x = e^{-2t} \sin 2t$, $y = (2\cos 2t - \sin 2t)e^{-2t}$ and $z = \frac{1}{8}(4t - 2 + 2\cos 4t - \sin 4t)e^{-4t}$, so z(t) remains positive for $t \to \infty$, but get's awfully small (a cynical view of marriage?)

2. The eigenvalues are ± 3 giving

$$\binom{x}{y} = \binom{1}{1} \left(Ae^{\sqrt{3}t} + Be^{-\sqrt{3}t} \right) + \binom{1}{-5} \left(C\cos\sqrt{3}t + D\sin\sqrt{3}t \right) + \binom{-1}{3}\sin t$$

The initial conditions give A = B = C = 0 and $D = \sqrt{3}/3$; *i.e.* pure oscillations.

3. The inverse Laplace transform gives

$$y = e^{-t}\cos 4t - \frac{1}{4}e^{-t}\sin 4t - \frac{1}{4}e^{-(t-\pi)}\sin 4(t-\pi)H(t-\pi).$$

4. We put u = v(x,t) - 1 to homogenize the boundary conditions, then separate variables, giving

$$u(x,t) = 1 + \sum_{n=1}^{\infty} b_n e^{-n^2 \pi^2 t/9} \sin\left(\frac{n\pi x}{3}\right),$$

with

$$b_n = \frac{2}{n\pi} [(-1)^n - 1].$$

Math 256. Final variation

Part I

1. The ODE $4y' + e^x y^{-3} = y^{-3}$ with y(0) = 0 has the solution,

(a)
$$e^x - 1 - x^3 \sin x$$
 (b) $e^x - e^{-x} - x^2 e^x$ (c) $(e^x - 1 - x^3)^3 + x e^{-2x}$
(d) $(1 - e^x + x)^{1/4}$ (e) None of the above.

2. The system

$$\mathbf{y}' = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 4 \\ 3 & 1 & 0 \end{pmatrix} \mathbf{y}$$

has the general solution,

(a)
$$\mathbf{u}_1 + \mathbf{u}_2 e^{6t} + \mathbf{u}_3 e^t$$
 (b) $\mathbf{u}_1 e^{7t} + \mathbf{u}_2 e^t + \mathbf{u}_3 e^{-2t}$ (c) $\mathbf{u}_1 e^t + \mathbf{u}_2 e^{2t} + \mathbf{u}_3 e^{-2t}$
(d) $\mathbf{u}_1 e^{-t} + \mathbf{u}_2 + \mathbf{u}_3 e^{9t}$ (e) None of the above,

for three constant vectors \mathbf{u}_1 , \mathbf{u}_2 and \mathbf{u}_3 .

3. The inverse Laplace transform of

$$\bar{y}(s) = \frac{4}{(s^2 + 4s + 5)}$$

is

(a)
$$y(t) = 4e^{-t}\sin 2t - 2e^{-t}\sin 2t$$
, (b) $y(t) = 4e^{-2t}\sin t$, (c) $y(t) = 4e^{-t}\sin 2t$,
(d) $y(t) = 4e^{-2t}(\cos t - 2\sin t)$, (e) None of the above.

4. Which of the following is a solution to the PDE $u_{xx} + 9u_{yy} - 8u_{xy} = 0$:

(a) $u = \cos x \sin 3y$ (b) $u = \cos 3x \cos 3y$ (c) $u = \cos 3x e^y$ (d) $u = \sin x e^{-y}$, (e) None of the above.

Part II

1. (12 points) Solve the ODEs,

$$x' + x - y = 0$$
, $y' + 3y + 10x = 0$, $z' + 4z + xy = 0$.

with (x(0), y(0), z(0)) = (0, 3, 0).

2. (12 points) Write the ODEs

$$x'' = 5y - 2x + 8\sin t, \quad y'' = 2y + x,$$

as a 2 × 2 system and then find the general solution using the eigenvalues and eigenvectors of the constant matrix that appears in your system. What is special about the initial conditions x(0) = y(0) = y'(0) = 0 and x'(0) = -2?

3. (10 points) From the definition of the Laplace transform, prove that $\mathcal{L}\{y''\} = s^2 \bar{y}(s) - sy(0) - y'(0)$ and $\mathcal{L}\{f(t-a)H(t-a)\} = e^{-as} \bar{f}(s)$. Find

$$\mathcal{L}^{-1}\left\{\frac{s}{(s^2-2s+10)}\right\}$$

Using Laplace transforms, solve the ODE

 $\ddot{y} - 2\dot{y} + 10y = \delta(t - \pi)\cos 3t,$

with $y(0) = \dot{y}(0) = 1$, where $\delta(t)$ is the delta-function.

4. (14 points) Solve

$$u_t = 9u_{xx}, \quad 0 < x < 4, \qquad u(0,t) = u(4,t) = 2, \quad u(x,0) = 1.$$

Math 256. Another Final variation

1. The ODE $y' - 4x + 3x^2y = 0$ with y(0) = 0 has the solution,

(a)
$$\frac{2x^2-1}{x^3}$$
 (b) $\frac{1-2x^2}{x^4}$ (c) $\frac{5x^2-4}{3x^2}$ (d) $\frac{3x^2-2}{3x^3}$ (e) None of the above.

2. For certain initial conditions, the system

$$\mathbf{y}'' = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 4 \\ 3 & 4 & 0 \end{pmatrix} \mathbf{y}$$

has the solution,

(a)
$$\mathbf{u}_1 + \mathbf{u}_2 e^{4t} + \mathbf{u}_3 e^{-4t}$$
 (b) $\mathbf{u}_1 e^{4t} + \mathbf{u}_2 e^{2t} + \mathbf{u}_3 e^{-4t}$ (c) $\mathbf{u}_1 e^t + \mathbf{u}_2 e^{4t} + \mathbf{u}_3 e^{-4t}$
(d) $\mathbf{u}_1 e^{-t} + \mathbf{u}_2 e^{-2t} + \mathbf{u}_3 e^{2t}$ (e) None of the above,

for three constant vectors \mathbf{u}_1 , \mathbf{u}_2 and \mathbf{u}_3 .

3. The inverse Laplace transform of

$$\bar{y}(s) = \frac{6-s}{(s^2+4)(s-1)}$$

is

(a)
$$y(t) = e^{-t} + \cos 2t$$
, (b) $y(t) = e^{-t} - \cos 2t$, (c) $y(t) = e^{-t} - \sin 2t$,
(d) $y(t) = e^{-t} - \cos 2t - \sin 2t$, (e) None of the above.

4. Which of the following is a solution to the PDE $u_t - u_{xx} + 3u = 0$:

(a)
$$u = \cos t \sin x$$
 (b) $u = e^t \cos x$ (c) $u = e^{-4t} \sin x$
(d) $u = \sin x + e^t$, (e) None of the above.

5. The Laplace transform of $te^t \sin t$ is

(a)
$$\frac{s+2}{(s^2+1)^2}$$
 (b) $\frac{s+1}{(s^2+1)^2}$ (c) $\frac{s}{(s^2+1)^2+1}$ (d) $\frac{s}{[(s^2+1)^2+1]^2}$,
(e) None of the above.

Part II

1. (12 points) A satellite satisfies the equations of motion,

$$x' - 2x + 2y = 0, \quad y' + 2y - 4x = 0, \quad z' = 4xz(y - x),$$

Find the path taken by the satellite if it starts at the point (x(0), y(0), z(0)) = (1, 1, 1). Does the satellite eventually fall into the sun at x = y = z = 0?

2. (12 points) Write the ODEs

$$x'' - 2y + 2x = \cos t, \quad y'' + 2y - 2x = 0,$$

as a 2×2 system and then find the general solution using the eigenvalues and eigenvectors of the constant matrix that appears in your system.

3. (10 points) From the definition of the Laplace transform and for constant a, find

$$\mathcal{L}\{y'\}, \quad \mathcal{L}\{y''\}, \quad \mathcal{L}\{y(t-a)H(t-a)\},$$

in terms of $\overline{y}(s) = \mathcal{L}\{y(t)\}, y(0)$ and y'(0). Using Laplace transforms, solve the ODE

$$\ddot{y} - 4\dot{y} + 13y = (t^2 + t + 1)\delta(t - 1),$$

with y(0) = 1 and $\dot{y}(0) = 4$, where $\delta(t)$ is the delta-function.

4. (14 points) Solve

$$9u_t = u_{xx}, \quad 0 < x < 4, \qquad u(0,t) = 0, \quad u(4,t) = 4, \quad u(x,0) = 0.$$