Math 256. Final

Name:
No formula sheet, books or calculators! Include this exam sheet with your answer booklet!

Part I

Circle what you think is the correct answer. +3 for a correct answer, -1 for a wrong answer, 0 for no answer.

1. The ODE $y^{\prime}=e^{x-y}$ with $y(0)=0$ has the solution,
(a) e^{x},
(b) $\ln \left(2-e^{x}\right)$,
(c) $\ln \left[2-(1-x) e^{x}\right]$,
(d) x,
(e) None of the above.
2. The general solution of the system,

$$
\mathbf{y}^{\prime \prime}=\left(\begin{array}{lll}
2 & 6 & 7 \\
0 & 4 & 0 \\
0 & 3 & 1
\end{array}\right) \mathbf{y}
$$

is
(a) $\mathbf{u}_{1} e^{-4 t}+\mathbf{u}_{2} e^{-2 t}+\mathbf{u}_{3} e^{-t}$
(b) $\mathbf{u}_{1} e^{4 t}+\mathbf{u}_{2} e^{2 t}+\mathbf{u}_{3} e^{t}$
(c) $\mathbf{u}_{1} e^{2 t}+\mathbf{u}_{2} e^{t}+\mathbf{u}_{3} e^{-2 t}$

$$
\text { (d) } \mathbf{u}_{1} e^{-t}+\mathbf{u}_{2} e^{t}+\mathbf{u}_{3} e^{4 t} \quad \text { (e) None of the above, }
$$

for three constant vectors $\mathbf{u}_{1}, \mathbf{u}_{2}$ and \mathbf{u}_{3}.
3. The inverse Laplace transform of the function,

$$
\bar{y}(s)=\frac{4 s}{\left(s^{2}+4 s+5\right)}
$$

is
(a) $y(t)=4 e^{-t} \cos 2 t-2 e^{-t} \sin 2 t$,
(b) $y(t)=4 e^{-2 t} \cos t$,
(c) $y(t)=4 e^{-t} \cos 2 t$,

$$
\text { (d) } y(t)=4 e^{-2 t}(\cos t-2 \sin t), \quad \text { (e) None of the above. }
$$

4. Which of the following is a solution to the PDE $u_{x x}+9 u_{y y}-8 u=0$:
(a) $\quad u=\cos x \sin 3 y$
(b) $\quad u=\cos 3 x \cos 3 y$
(c) $u=\cos 3 x e^{y}$

$$
\text { (d) } \quad u=\sin 3 x \sin y \quad \text { (e) } \quad u=\sin x e^{-y}
$$

5. Separation of variables
(a) is a method for turning ODEs into PDEs, (b) uses the Laplace transform,
(c) determines the integrating factor of an $O D E, \quad(d)$ is cool if you like that sort of thing,
(e) identifies resonant behaviour for a driven oscillator.

Part II

Answer in full (i.e. give as many arguments, explanations and steps as you think is needed for a normal person to understand your logic). Answer as much as you can; partial credit awarded.

1. (12 points) Professor X patents a machine that claims to consume power $x(t)$ whilst producing ice cream $z(t)$ and chocolate $w(t)$. He models the machine with the ODEs,

$$
x^{\prime \prime}-x=-2 \sin t, \quad z^{\prime} \cos t-x z=1, \quad w^{\prime}=x w^{2}
$$

For the initial conditions, $x(0)=0, x^{\prime}(0)=1, z(0)=0$ and $w(0)=1$, what are the solutions? What happens to the ice cream and chocolate as time increases up to $\frac{1}{2} \pi$?
2. (12 points) Write the ODEs

$$
x^{\prime \prime}=2 y-4 x+\sin t, \quad y^{\prime \prime}=2 x-y+2 \sin t
$$

as a 2×2 system and then find the general solution using the eigenvalues and eigenvectors of the constant matrix that appears in your system. What is special about the initial conditions $x(0)=y(0)=0, x^{\prime}(0)=-1$ and $y^{\prime}(0)=-2$?
3. (10 points)
(a) From the definition of the Laplace transform, prove the two shifting theorems.
(b) The current in an electrical circuit satisfies the ODE,

$$
\ddot{y}+2 \dot{y}+y=e^{-t}[1-H(t-1)],
$$

with $y(0)=A$ and $\dot{y}(0)=B$, where $H(t)$ denotes the step function and A and B are constants. Solve this ODE.
(c) For what values of A and B does the current vanish for $t>1$?

4. (14 points)

(a) The function $f(x)$, defined on $0 \leq x \leq \pi$, is extended as an odd, 2π-periodic function to $-\infty<x<\infty$. State the Fourier series of the extended function, giving the formulae for its coefficients as integrals over the original interval $[0, \pi]$.
(b) Consider the PDE

$$
u_{t}=u_{x x}+\cos x, \quad 0<x<\pi, \quad u(0, t)=1, \quad u(\pi, t)=-1, \quad u(x, 0)=0
$$

Find the steady-state solution, $u \rightarrow U(x)$. Then solve the PDE.

Fourier Series:

For a periodic function $f(x)$ with period $2 L$, the Fourier series is

$$
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

with

$$
a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x, \quad a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Helpful trig identities:

$$
\begin{gathered}
\sin 0=\sin \pi=0, \quad \sin (\pi / 2)=1=-\sin (3 \pi / 2) \\
\cos 0=-\cos \pi=1, \quad \cos (\pi / 2)=\cos (3 \pi / 2)=0 \\
\sin (-A)=-\sin A, \quad \cos (-A)=\cos A, \quad \sin ^{2} A+\cos ^{2} A=1 \\
\sin (2 A)=2 \sin A \cos A, \quad \sin (A+B)=\sin A \cos B+\cos A \sin B \\
\cos (2 A)=\cos ^{2} A-\sin ^{2} A=1-2 \sin ^{2} A, \quad \cos (A+B)=\cos A \cos B-\sin A \sin B, \\
\sin (A+B)+\sin (A-B)=2 \sin A \cos B
\end{gathered}
$$

Useful Laplace Transforms:

$$
\begin{aligned}
& f(t) \quad \rightarrow \quad \bar{f}(s) \\
& 1 \quad \rightarrow \quad 1 / s \\
& t^{n}, \quad n=0,1,2, \ldots \quad \rightarrow \quad n!/ s^{n+1} \\
& e^{a t} \quad \rightarrow \quad 1 /(s-a) \\
& \sin a t \quad \rightarrow \quad a /\left(s^{2}+a^{2}\right) \\
& \cos a t \quad \rightarrow \quad s /\left(s^{2}+a^{2}\right) \\
& t \sin a t \rightarrow 2 a s /\left(s^{2}+a^{2}\right)^{2} \\
& t \cos a t \rightarrow\left(s^{2}-a^{2}\right) /\left(s^{2}+a^{2}\right)^{2} \\
& y^{\prime}(t) \quad \rightarrow \quad s \bar{y}(s)-y(0) \\
& y^{\prime \prime}(t) \quad \rightarrow \quad s^{2} \bar{y}(s)-y^{\prime}(0)-s y(0) \\
& e^{a t} f(t) \quad \rightarrow \quad \bar{f}(s-a) \\
& f(t-a) H(t-a) \quad \rightarrow \quad e^{-a s} \bar{f}(s)
\end{aligned}
$$

$\int_{-\infty}^{\infty} \delta(x-a) f(x) d x=f(a)$

Solutions:

Part I: (d), (e), (d), (e), (d)

1. The ODE is separable:

$$
\int e^{y} d y=\int e^{x} d x+C \quad \longrightarrow \quad e^{y}=e^{x}+C \quad \text { or } \quad y=\ln \left[C+e^{x}\right]
$$

where C must equal 0 from the starting condition. i.e. $y=x$. But by inspection (and with rather less effort) one can also see that this answer (d) clearly solves the ODE and starting condition.
2. The system is second-order and 3×3. Therefore, there must be six homogeneous solutions, two of which have the time dependence $\exp (\pm \sqrt{2} t)$ (one of the eigenvalues is 2).
3. We have

$$
\frac{4 s}{(s+2)^{2}+1}=\frac{4(s+2)}{(s+2)^{2}+1}-\frac{8}{(s+2)^{2}+1}=4 \mathcal{L}\left\{e^{-2 t} \cos t\right\}-8 \mathcal{L}\left\{e^{-2 t} \sin t\right\}
$$

4. Answer (e) is the only one that successfully solves the PDE on substitution.
5. All the answers are silly, but (d) at least is not wrong.

Part II:

1. We divide and conquer, dealing with $x(t)$ first. This ODE has the homogeneous solutions, $A_{1} e^{t}+$ $A_{2} e^{-t}$, and the particular solution $\sin t$. But the ICs demand that $A_{1}=A_{2}=0$, so $x(t)=\sin t$. Inserting this into the z-equation gives

$$
z^{\prime} \cos t-z \sin t=1 \quad \text { or } \quad \frac{d}{d t}(z \cos t)=1 \quad \longrightarrow \quad z(t)=\frac{t+C}{\cos t}=\frac{t}{\cos t}
$$

in view of the IC. Alternatively, but with more effort, one can divide by $\cos t$, find the integrating factor $I=\exp \int(-\sin t) /(\cos t) d t=\cos t$, and then solve the ODE (given $q I=1$). Last,

$$
w^{\prime}+w^{2} \sin t=0
$$

which is separable:

$$
\int \frac{d w}{w^{2}}=C+\int \sin t d t \quad \text { or } \quad-\frac{1}{w}=C-\cos t=-\cos t
$$

given $w(0)=1$. i.e. $w=\sec t$. The solutions for z and w diverge for $t \rightarrow \frac{1}{2} \pi$. Happy days.
2. The system is

$$
\binom{x^{\prime \prime}}{y^{\prime \prime}}=\left(\begin{array}{cc}
-4 & 2 \\
2 & -1
\end{array}\right)\binom{x}{y}+\binom{1}{2} \sin t
$$

The eigenvalues of the matrix are 0 and -5 , with eigenvectors $\binom{1}{2}$ and $\binom{2}{-1}$, resectively. The particular solution is $\binom{d_{1}}{d_{2}} \sin t$ where

$$
-d_{1}=2 d_{2}-4 d_{1}+1 \quad \& \quad-d_{2}=2 d_{1}-d_{2}+2
$$

which lead to $-\binom{1}{2} \sin t$. The general solution is therefore

$$
\binom{x}{y}=\binom{1}{2}(A+B t)+\binom{2}{-1}(C \cos \sqrt{5} t+D \sin \sqrt{5} t)-\binom{1}{2} \sin t
$$

The initial conditions give $A=B=C=D=0$, implying no homogeneous solutions and a pure oscillation with unit frequency.
3. From the definition of the Laplace transform

$$
\begin{gathered}
\mathcal{L}\left\{e^{a t} f(t)\right\}=\int_{0}^{\infty} e^{-(s-a) t} f(t) d t=\bar{f}(s) \\
\mathcal{L}\{H(t-a) f(t-a)\}=\int_{a}^{\infty} e^{-s t} f(t-a) d t=e^{-a s} \int_{a}^{\infty} e^{-s \tau} f(\tau) d \tau=e^{-a s} \bar{f}(s)
\end{gathered}
$$

The Laplace transform of the ODE gives

$$
\left(s^{2}+2 s+1\right) \bar{y}(s)-s A-B-2 A=\frac{1}{s+1}-\frac{e^{-s-1}}{s+1}
$$

or

$$
\bar{y}(s)=\frac{A}{s+1}+\frac{A+B}{(s+1)^{2}}+\frac{1}{(s+1)^{3}}-\frac{e^{-s-1}}{(s+1)^{3}}
$$

The inverse is

$$
y(t)=A e^{-t}+(A+B) t e^{-t}+\frac{1}{2} t^{2} e^{-t}-\frac{1}{2}(t-1)^{2} e^{-t} H(t-1)
$$

When $t>1$, the RHS has the factor $A+(A+B) t-\frac{1}{2}+t$, which vanishes if $A=\frac{1}{2}$ and $B=-\frac{3}{2}$.
4.

$$
\text { (a) } \quad f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x, \quad b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x \text {. }
$$

(b) The steady state solution, satisfying $U^{\prime \prime}+\cos x=0, U(0)=1$ and $U(\pi)=-1$, is $U=\cos x$. Putting $v=u-U$ we then find the homogeneous problem,

$$
v_{t}=v_{x x}, \quad v(0, t)=v(\pi, t)=0, v(x, 0)=-U(x) .
$$

Separating variables then gives

$$
v=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} t} \sin n x, \quad b_{n}=\frac{2}{\pi} \int_{0}^{\pi}(-\cos x) \sin n x d x
$$

which can be evaluated using a handy trig formula. Thence,

$$
u(x, t)=\cos x-\sum_{n \text { even }}^{\infty} \frac{4 n e^{-n^{2} t} \sin n x}{\pi\left(n^{2}-1\right)}
$$

