
Math 257/316: Finite difference methods

1 Finite Differences

Remember the definition of a derivative

f ′(x) = lim
∆x→0

f(x + ∆x) − f(x)

∆x
(1)

Also recall Taylor’s formula:

f(x + ∆x) = f(x) + ∆xf ′(x) +
∆x2

2!
f ′′(x) +

∆x3

3!
f (3)(x) + . . . (2)

or, with −∆x instead of +∆x:

f(x − ∆x) = f(x) − ∆xf ′(x) +
∆x2

2!
f ′′(x) −

∆x3

3!
f (3)(x) + . . . (3)

Forward difference

On a computer, derivatives are approximated by finite difference expressions; rearrang-
ing (2) gives the forward difference approximation

f(x + ∆x) − f(x)

∆x
= f ′(x) + O(∆x), (4)

where O(∆x) means ‘terms of order ∆x’, ie. terms which have size similar to or smaller
than ∆x when ∆x is small.1 So the expression on the left approximates the derivative of
f at x, and has an error of size ∆x; the approximation is said to be ‘first order accurate’.

1The strict mathematical definition of O(δ) is to say that it represents terms y such that

lim
δ→0

(y

δ

)

is finite.

So δ2 and δ are O(δ), but δ1/2 or 1, for instance, are not. Another commonly used notation is o(δ),
which represents terms y for which

lim
δ→0

(y

δ

)

= 0.

In other words, o(δ) represents terms that are strictly smaller than δ as δ → 0. So δ2 is o(δ), but δ is
not.
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Backward difference

Rearranging (3) similarly gives the backward difference approximation

f(x) − f(x − ∆x)

∆x
= f ′(x) + O(∆x), (5)

which is also first order accurate, since the error is of order ∆x.

Centered difference

Combining (2) and (3) gives the centered difference approximation

f(x + ∆x) − f(x − ∆x)

2∆x
= f ′(x) + O(∆x2), (6)

which is ‘second order accurate’, because the error this time is of order ∆x2.

Second derivative, centered difference

Adding (2) and (3) gives

f(x + ∆x) + f(x − ∆x) = 2f(x) + ∆x2f ′′(x) +
∆x4

12
f (4)(x) + . . . (7)

Rearranging this therefore gives the centered difference approximation to the second
derivative:

f(x + ∆x) − 2f(x) + f(x − ∆x)

∆x2
= f ′′(x) + O(∆x2), (8)

which is second order accurate.

2 Heat Equation

Dirichlet boundary conditions

To find a numerical solution to the heat equation

∂u

∂t
= κ

∂2u

∂x2
, 0 < x < L, (9)

u(0, t) = A, u(L, t) = B, u(x, 0) = f(x), (10)

approximate the time derivative using forward differences, and the spatial derivative
using centered differences;

u(x, t + ∆t) − u(x, t)

∆t
= κ

u(x + ∆x, t) − 2u(x, t) + u(x − ∆x, t)

∆x2
+ O(∆t, ∆x2). (11)
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This approximation is second order accurate in space and first order accurate in time.
The use of the forward difference means the method is explicit, because it gives an
explicit formula for u(x, t + ∆t) depending only on the values of u at time t.

Divide the interval 0 < x < L into N + 1 evenly spaced intervals, with spacing ∆x
(i.e. ∆x = L/(N +1)). Let xn = n∆x, for n = 0, 1, . . . , N , and divide time into discrete
levels tk = k∆t for k = 0, 1, . . .. Then seek the solution by finding the discrete values

uk

n
= u(xn, tk). (12)

From (11), these satisfy the equations

uk+1
n

− uk

n

∆t
= κ

uk

n+1 − 2uk

n
+ uk

n−1

∆x2
, (13)

or, rearranging,

uk+1
n

= uk

n
+

κ∆t

∆x2

(

uk

n+1 − 2uk

n
+ uk

n−1

)

. (14)

If the values of un at timestep k are known, this formula gives all the values at timestep
k + 1, and it can then be iterated again and again to march forward in time.

The initial condition gives
u0

n
= f(xn), (15)

for all n, and the boundary conditions require

uk

0 = A, uk

N+1 = B, (16)

for all values of k > 0.

Stability

Note, this method will only be stable, provided the condition

κ∆t

∆x2
≤

1

2
, (17)

is satisfied; otherwise it will not work. One can demonstrate this by plugging the trial
solution uk

n
= φk exp(inθ∆x) into (14) and re-arranging, using some trig identities:

φk+1 = fφk, f = 1 −
4κ∆t

∆x2
sin2

(

1

2
θ∆x

)

. (18)

Hence φk = φ0fk, which will grow with k if |f | > 1, leading to oscillations on the scale
of the grid. To avoid this grid instability, we must demand that −1 ≤ f ≤ 1, which is
guaranteed by (17) since sin2 Θ ≤ 1.
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Neumann boundary conditions

With the Neumann conditions,

∂u

∂x
(0, t) = C and

∂u

∂x
(L, t) = D, (19)

we do not know the value of u(x, t) on the boundaries. Hence we include the boundary
points on the grid of positions where we compute the solution. We can use the same
grid as before and include the two extra points n = 0 and n = N + 1, giving a grid
of N + 2 points. Or, we can re-order the grid point positions so that there are still N
points, with x1 = 0 and xN = L. Following the latter choice, we notice that the centered
difference version of the first boundary condition would be

u(0 + ∆x, t) − u(0 − ∆x, t)

2∆x
= C, (20)

and therefore
u(−∆x, t) = u(∆x, t) − 2C∆x. (21)

x = −∆x is outside the domain of interest, but this relation gives its value regardless.
The discretised equation (14) can then be used for x = 0 (n = 1):

uk+1
1 = uk

1 +
2κ∆t

∆x2

(

uk

2 − uk

1 − C∆x
)

. (22)

Similarly for n = N , we have

uN+1 = uN + 2D∆x and uk+1
N

= uk

N
+

2κ∆t

∆x2

(

uk

N−1 − uk

N
+ D∆x

)

. (23)

If there is a mix of boundary conditions (e.g. u(0, t) = A and ux(L, t) = D), then
we can include the boundary with the Neumann condition on the mesh, but not the
boundary with the Dirichlet condition, then follow the relevant scheme outlined above
for each.

4


