Algebraic problems

1. Find the rescalings for the roots of

\[\epsilon^3 x^3 - (1 - 3\epsilon + 3\epsilon^2 + \epsilon^4)x^2 + (3 - 8\epsilon - 3\epsilon^2 + 2\epsilon^3 - \epsilon^4 - 6\epsilon^5)x - 2 + 7\epsilon + 3\epsilon^2 - 18\epsilon^3 = 0, \]

and hence find two (non-trivial) terms in the approximation for each root, using (a) iteration and (b) expansion.

2. Develop two terms of the perturbation solutions to

\[\delta x^3 - (1 - \delta + 2\delta^2 - 2\delta^3)x^2 + (2 - 4\delta - 6\delta^2 + 3\delta^3 - 2\delta^4)x - 2\delta + 9\delta^2 - 7\delta^3 - 6\delta^4 = 0, \]

for \(\delta \ll 1 \) and \(\delta \gg 1 \).

3. Develop perturbation solutions to

\[x^3 - (6 + \epsilon + 3\epsilon^2)x^2 + (12 + 11\epsilon^2 + 6\epsilon^3)x - 8 + 4\epsilon - 14\epsilon^2 + \epsilon^3 - 3\epsilon^4 = 0 \]

finding the three terms in the approximation for each root, \(x = x_0 + \epsilon^\alpha x_\alpha + \epsilon^{2\alpha} x_{2\alpha} \), and determining \(\alpha \) along the way.

4. Develop three terms of the perturbation solutions to the real roots of

\[e^{-3x^2} = \epsilon x. \]
Eigenproblems and regularly perturbed differential equations

1. Find the corrections to the leading-order eigenvalues of the matrix problem $Ax = \lambda x + \epsilon Bx$, for

 (a) $\begin{pmatrix} 9 & -2 \\ -12 & 11 \end{pmatrix}$
 (b) $\begin{pmatrix} 1 & 2 \\ 8 & 9 \end{pmatrix}$

 and

 $B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$

2. Find the nontrivial corrections to the leading-order eigenvalues of the differential equation,

 $y'' + \lambda y + \epsilon y f(x) = 0$,

 with $y(0) = y(1) = 0$, for (a) $f(x) = \sin \pi x$ and (b) $f(x) = \cos \pi x$.

3. Normal modes of a slightly mis-shapen membrane

 Normal-mode solutions to the wave equation $\nabla^2 \phi = \phi_{tt}$ take the form $\phi(x,y,t) = \Phi(x,y) \cos(\omega t)$ and therefore satisfy

 $\Phi_{xx} + \Phi_{yy} = -\omega^2 \Phi$,

 where subscripts denote partial derivatives. Consider a slightly mis-shapen membrane with

 $0 \leq x \leq 1, \quad \epsilon \sin \pi x \leq y \leq 1$.

 Show that $\Phi = \sin \pi x \sin n\pi y$ is a leading-order eigenfunction, with n an integer. Find the corresponding eigenvalue ω. Calculate the $O(\epsilon)$ correction to the eigenvalue for (a) $n = 1$ and (b) $n = 2$.

Integrals

1. Use the method of repeated integration by parts or rescaling to obtain five terms in the asymptotic approximation to the integral,

$$\int_{x}^{\infty} t^{-4} e^{-t} dt,$$

for $x \to 0$. Note that

$$\gamma = -\int_{0}^{\infty} e^{-t} \log t \, dt$$

is Euler’s constant.

2. Find the leading-order behaviour for $x \gg 1$ of

(a) $\int_{0}^{\infty} e^{xt^2(2-t^2)} \frac{dt}{(1 + t^3)}$
(b) $\int_{-\infty}^{\infty} t^2 e^{-x \cosh^2 t} \, dt$
(c) $\int_{0}^{\pi} \sqrt{\sin t} e^{-x \sin^2 t} \, dt$

3. Evaluate the first two terms as $\epsilon \to 0$ of

$$\int_{0}^{\infty} \frac{dx}{(\epsilon + x)^{3/2}(1 + x)}$$

4. Evaluate the first two terms as m approaches unity from below of

$$\int_{-\pi}^{\pi} \frac{d\theta}{(1 - m^2 \sin^2 2\theta)^{1/2}}$$
Matched asymptotic expansions

1. Consider
\[\epsilon y'' + y' + y + \epsilon xy = 0, \quad \text{in } 0 \leq x \leq 1, \]
with \(y(0) = 0 \) and \(y(1) = e^{-1} \). Find three terms of the outer solution, applying only the boundary condition at \(x = 1 \). Next find three terms in an inner approximation for the boundary layer near \(x = 0 \) applying the boundary condition at \(x = 0 \). Determine the constants of integration by matching (a) over an intermediate region, and (b) using van Dyke’s rule with \(P = Q = 2 \). Compute the composite approximation, \(C_{2,2y} \).

2. The function \(y(x) \) satisfies
\[\epsilon y'' + x^p y' + y = 0, \quad \text{in } 0 \leq x \leq 1, \]
for \(p > 0 \), \(y(0) = 0 \) and \(y(1) = 1 \). First find the rescaling for the boundary layer near \(x = 0 \), and obtain the leading order inner approximation. Then find the leading order outer approximation and match the two approximations.

3. Calculate two terms of the outer solution of
\[x^2 y' = \epsilon [(1 + \epsilon)x^2 y^2 - x^2 + y^2] \quad \text{in } 0 \leq x \leq 1, \]
with \(y(1) = 1 \). Locate the non-uniformity of the asymptoticness and hence the rescaling for an inner region. Thence find two terms for this inner solution. Is there another boundary layer nested inside the inner region?

4. The function \(f(x) \) satisfies
\[f_{xx} - \frac{1}{2x^{3/2}} \epsilon f f_x = 0, \quad f(0) = 1, \quad f(1) = 0. \]
Obtain an asymptotic expansion for \(f \) at fixed \(x \) and \(\epsilon \to 0 \) in the asymptotic sequence, \(1, \epsilon, \epsilon^2 \log(1/\epsilon), \epsilon^2 \). Then find an expansion for \(f \) at fixed \(\xi = x \epsilon^{-\alpha} \) as \(\epsilon \to 0 \) for some \(\alpha \) (that you should determine), in the sequence \(1, \epsilon^2 \). Match these expansions.
Multiple Scales

1. Obtain an asymptotic approximation for x to order one, which is valid for $t = O(\epsilon^{-1})$, when

$$\ddot{x} + \epsilon(\dot{x}^5 + x^5) + x = 0$$

with $x(0) = 0$ and $\dot{x}(0) = 1$.

2. Find the leading-order approximation for times of order ϵ^{-1} to

$$\ddot{x} + x - \epsilon x^2 = y^2$$

$$\dot{y} = -\epsilon x$$

with $x(0) = 1$, $\dot{x}(0) = 0$ and $y(0) = 1$.

3. Obtain an asymptotic approximation for x to order one, which is valid for $t = O(\epsilon^{-1})$, when

$$\ddot{x} + x = \epsilon|x|, \quad x(0) = 1, \quad \dot{x}(0) = 0.$$

4. Mathieu problem. The equation:

$$\ddot{y} + (a + 2\epsilon \cos t)y = 0$$

with

$$a = \frac{1}{4} n^2 + \epsilon a_1 + \epsilon^2 a_2$$

We are interested in discovering when solutions grow exponentially; the initial conditions are not particularly relevant. Let’s solve the problem with multiple scales:

$$y = y_0(\tau, T, T_2) + \epsilon y_1(\tau, T, T_2) + \epsilon^2 y_2(\tau, T, T_2) + ... \quad \tau = t, \quad T = \epsilon t, \quad T_2 = \epsilon^2 t.$$

Verify that the leading-order solution can be written as

$$y_0 = A(T, T_2) \cos \frac{n\tau}{2} + B(T, T_2) \sin \frac{n\tau}{2}$$

For $n = 1$, show that some of the inhomogeneous terms of the y_1 equation are resonant. Eliminate the baddies, write a single equation for A, and show that the solution grows exponentially (signifying parametric instability) over a certain range of a_1; translate this back to a sector of the (a, ϵ)–plane.

For $n = 2$, convince yourself that we should drop the first slow timescale T, and write

$$y_0 = A(T_2) \cos \tau + B(T_2) \sin \tau$$

Now press on to $O(\epsilon^2)$ and eliminate the bad guys again, to write the equation for A. Once more, determine the sector of the (a, ϵ)–plane where there is exponential growth.

Finally, repeat the exercise for $n = 0$.
