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The spreading under surface tension and gravity of a droplet of yield-stress fluid over a
thin film of the same material is studied. The droplet converges to a final equilibrium
shape once the driving stresses inside the droplet fall below the yield stress. Scaling
laws are presented for the final radius and complemented with an asymptotic analysis for
shallow droplets. Moreover, numerical simulations using the volume-of-fluid method and
a regularized constitutive law, and experiments with an aqueous solution of Carbopol, are
presented.
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1. Introduction

The impact and spreading of droplets of complex fluids over surfaces occur in a wide
variety of industrial applications. Examples include, but are not limited to, inkjet printing,
spray coating and additive manufacturing (Barnes 1999; Derby 2010; Thompson et al.
2014; Mackay 2018). In many cases, such as three-dimensional (3-D) printers and paint
sprays, liquid droplets or filaments are deposited on an existing layer of the same fluid.
Hence, understanding the underlying fluid mechanics of droplet spreading on a thin film
helps to improve the design of such systems. On the theoretical side, the removal of
an advancing contact line has the extra advantage of simplifying the spreading problem
substantially by removing the complicated physics associated with relieving the stress
singularity that otherwise arises (e.g. Oron, Davis & Bankoff 1997; Bonn et al. 2009;
Craster & Matar 2009). Precursor films are also expected to be drawn out ahead of
spreading droplets by intermolecular forces, effectively emplacing a pre-wetted film even
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in situations in which one did not exist originally (e.g. Bonn et al. 2009; Craster & Matar
2009).

The spreading of Newtonian droplets over a thin layer has been addressed previously for
a range of physical regimes (see Bergemann, Juel & Heil (2018), Jalaal, Seyfert & Snoeijer
(2019b), and references therein). The present article aims to provide a discussion on the
viscoplastic version of this problem. Viscoplastic or yield-stress fluids feature a mix of
fluid and solid behaviour: if not sufficiently stressed, such materials behave more like an
elastic material, but, above a critical yield stress, they flow like a viscous fluid. Yield stress
is a common feature of many natural and industrial fluids, such as clay, cement, toothpaste,
cosmetic creams, dairy products and waxy oil (see Balmforth, Frigaard & Ovarlez (2014),
Coussot (2014) and Bonn et al. (2017) for reviews).

For a Newtonian droplet deposited on a thin film of the same fluid and spreading
due to gravity and surface tension, flow continues until a completely flat film is formed.
By contrast, when the driving stresses fall below the yield stress, flow ceases inside a
viscoplastic droplet. Consequently, the final shape is not flat, as shown previously in
different configurations (Roussel & Coussot 2005; Balmforth et al. 2007a; German &
Bertola 2009; Jalaal, Balmforth & Stoeber 2015; Liu et al. 2016; Chen & Bertola 2017; Liu,
Balmforth & Hormozi 2018). The final shape of the droplets is of particular importance in
industrial processes such as 3-D printing, as it can determine the resolution of the printing
process and the final quality of the product. Previous experiments have been reported for
the problem of viscoplastic droplet impact on solid surfaces (Luu & Forterre 2009; Saïdi,
Martin & Magnin 2010; Luu & Forterre 2013; Blackwell et al. 2015; Sen, Morales &
Ewoldt 2020) or fluid interfaces (Jalaal, Kemper & Lohse 2019a).

In the present work, we explore the spreading of a viscoplastic droplet and its final shape,
providing a theoretical framework for the problem complemented with experimental
and computational results. The order of material in this paper is as follows. Section
2 presents simple scaling laws for the final shape of a viscoplastic droplet. Section 3
summarizes a viscoplastic lubrication theory suitable for shallow droplets. Section 4
presents the numerical simulations for a spreading viscoplastic droplet. Section 5 describes
the experimental tests, and is followed by § 6, which summarizes the theoretical and
experimental results. The appendices contain further technical details of the lubrication
theory and numerical computations.

2. Scaling laws for the final shape

Consider a viscoplastic droplet deposited on a thin film of thickness H∞ at t = 0. We
imagine that the droplet yields entirely under capillary action or gravity, spreading and
then braking to a halt due to the yield stress τ0. That is, we consider the situation in which
the yield stress cannot localize flow and leave intact a substantial volume of the droplet to
imprint a dependence of the final shape on the initial configuration. Global force balance
over the entire droplet volume should then control the final radius Rf and height Hf . If
the rheology of the fluid only features through the yield stress, the physical parameters
of the problem include τ0, the density of the droplet ρ, the surface tension coefficient σ ,
gravitational acceleration g and the droplet volume V .

When the droplet spreads under capillary effects, the driving horizontal pressure force
(given by the product of the pressure p ∼ σκ and a typical vertical surface area HfRf )
can be estimated as

pHfRf ∼ σκHfRf ∼ σ
H2

f

Rf
, (2.1)
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Spreading of viscoplastic droplets

where κ ∼ Hf /R2
f is the curvature. On the other hand, if the droplet does not slip over

the underlying surface and the yield stress acting over the base of the droplet provides the
main resistance to flow, the opposing force is of the order of τ0R2

f . By balancing the two,
we arrive at

σH2
f ∼ τ0R3

f . (2.2)

Moreover, since V ∼ HfR2
f , if we define the length scale L = [3V/(4π)]1/3 (i.e. the

radius of the corresponding spherical drop), then

σV2 ∼ τ0R7
f or

Rf

L = ΩcJ −1/7, where J = τ0L
σ

(2.3)

is a non-dimensional number that compares the yield stress and capillary pressure.
Thus, as the strength of the plastic effect J increases, the final radius becomes
correspondingly smaller. In (2.3), the prefactor Ωc encapsulates dependence on the
remaining dimensionless groups in the problem. If gravity and any other effects are not
important, the only remaining group is the scaled pre-wetted film thickness, h∞ ≡ H∞/L.

If we instead counter a driving hydrostatic pressure p ∼ ρgHf by the resistance from
the yield stress, the balance is

ρgH2
f Rf ∼ τ0R2

f or
Rf

L = Ωg

(
ρgL
τ0

)1/5

≡ ΩgB1/5J −1/5, where B = ρgL2

σ
(2.4)

is the Bond number, comparing the hydrostatic pressure and capillary pressure. Again, the
prefactor Ωg contains the dependence on any other dimensionless groups. Note that the
combination B/J is independent of σ , eliminating surface tension from the right-hand
side of (2.4) when capillary effects are not present and Ωg depends only on h∞. This limit
is relevant to geophysical flows and rheometry with larger spatial scales (cf. Roussel &
Coussot 2005; Balmforth et al. 2006).

More generally, we must take either Ωc or Ωg to depend on both B and h∞ = H∞/L,
as well as any other dimensionless parameters stemming from further physical effects. In
what follows, we assume that only B and h∞ are relevant and write the general relation

Rf

L = Ω(B, h∞)J −1/7, (2.5)

with Ω → Ωc in the capillary-dominated limit B → 0, and Ω → ΩgB1/5J −2/35 in the
gravity-dominated limit B � 1. In particular, we compare this scaling law with asymptotic
analysis, numerical simulations and experiments, each of which provides more refined
estimates for Ω .

3. Viscoplastic lubrication theory

As sketched in figure 1, and assuming that the droplet remains axisymmetric, we employ
cylindrical polar coordinates (r, z) to describe the geometry of a shallow viscoplastic
droplet. The top surface of the fluid lies at z = h(r, t), and the droplet is emplaced upon
an existing fluid layer of thickness H∞. There is a rigid plane at z = 0 over which the
fluid cannot slip. To simplify our discussion, we used the Bingham constitutive law, which
combines the yield stress τ0 with a plastic viscosity μ.

Lubrication theory applies when droplets are relatively shallow and inertia is negligible.
In this instance, the hydrostatic and capillary pressures are largely independent of z and
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Pre-wetted film

g

z
Droplet

Pseudo-plug

Fully yielded

r

z = Y (r,t)

z = h (r,t)

R(t)

h∞ = H∞/L

Figure 1. Sketches of the geometry and anatomy of a spreading viscoplastic droplet. The top surface is z =
h(r, t); below z = Y(r, t) the fluid is fully yielded and flows in a plug-like manner over Y < z < h, where fluid
is held near the yield stress (the ‘pseudo-plug’).

drive spreading, which is primarily countered by the vertical shear stress. The analysis
for viscoplastic fluid follows along similar lines to that for Newtonian fluid (e.g. Oron
et al. 1997; Craster & Matar 2009), the key differences arising from the impact of the
yield stress on the vertical profile of the radial velocity (Liu & Mei 1989; Balmforth
et al. 2006). In particular, as illustrated in figure 1, the velocity field adopts a distinctive
anatomy in which a lower slice of the fluid in 0 < z < Y(r, t) is fully yielded and the radial
velocity has a parabolic profile; over the region Y(r, t) < z < h(r, t), the radial velocity
becomes plug-like and independent of z to leading order. The upper region possesses a
shear stress that lies below the yield stress, an observation that has previously led to the
incorrect conclusion that the fluid here is unyielded, contradicting the radial expansion and
appearing to imply a paradox in lubrication theory. In fact, over the plug-like region, or
‘pseudo-plug’, the extensional stresses are of the same order as the shear stress (a feature
demanded by the proper 3-D form of the Bingham constitutive law when deformation
rates are relatively small) and their conspiracy holds the stress slightly above τ0 to permit
the radial expansion (Balmforth & Craster 1999; Putz, Frigaard & Martinez 2009). In
the limit τ0 → 0, the pseudo-plug disappears (Y → h) and we recover the fully parabolic
Newtonian flow profile. Conversely, when Y → 0, the pseudo-plug reaches the base,
bringing the entire fluid layer to a halt.

Given the shallow-layer velocity field of the lubrication analysis, the expression of
depth-integrated mass conservation provides an evolution equation for the local fluid
depth. We express this equation in the dimensionless form

ht = 1
6r

[rprY2(3h − Y)]r, p = Bh − 1
r
(rhr)r, (3.1a,b)

after scaling lengths by L, pressure p(r, t) by σ/L, velocity by U = σ/μ and time by L/U;
the surface bordering the pseudo-plug is given by

Y = max
(

0, h − J
|pr|

)
. (3.2)

For J = 0, one has Y = h and (3.1a,b) reduces to the standard evolution equation for a
Newtonian film and therefore recovers known spreading laws for viscous droplets under
the action of gravity, capillarity or a combination of both (Oron et al. 1997; Bonn et al.
2009; Craster & Matar 2009).

3.1. Sample spreading solutions
To provide sample solutions for spreading viscoplastic droplets, we solve (3.1a,b)
numerically using centred finite differences to approximate radial derivatives and a stiff
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Figure 2. Numerical solutions of the evolution equation (3.1a,b). (a) Snapshots of h(r, t) (grey lines) for J =
5/4 and B = 0, with the inset showing a magnification of the edge of the droplet; the final snapshot is plotted
in black. The surface z = Y(r, t) at an intermediate time (corresponding to the curve of h(r, t) in blue) is
included as the red dashed line. (b,c) Time series of the edge (defined as the first radial position R(t) where
h(R, t) = h∞) for (b) (J , h∞) = (1.25, 0.01) with B = 0, 3/4 and 2, and (c) (J ,B) = (1.25, 0) with h∞ =
10−3, 3 × 10−3 and 0.01. The red dotted lines show corresponding Newtonian solutions (J = 0), and the stars
indicate the times of the snapshots in panel (a). The relatively sharp features in R(t) for t ≈ 1 in panels (b) and
(c) correspond to the creation of the undulating wavetrain at the edge of the droplet.

integrator to step the surface profile forwards in time. The length of the domain is chosen
sufficiently large that the droplet never reaches the border. We begin from the initial
condition h(r, 0) = max(0, 1 − 3r2/16)3 + h∞, which smoothly interpolates between the
pre-wetted film of scaled thickness h∞ and an initial ‘bump’ with a dimensionless radius
R(0) = 4/

√
3 (chosen so that the dimensional volume is V = 4πL3/3, given the scaling

of lengths by L); the results are insensitive to the precise initial shape of the bump
provided the droplet becomes fully yielded during spreading. We also replace (3.2) by
the regularization Y = max(ε, h − J /|pr|) to ease computations, with ε = 10−6 (having
verified that the precise value makes no significant difference to the results).

Figure 2(a) shows a solution with J = 5/4 and B = 0, using an initial fluid film of
thickness h∞ = 0.01. The dimensionless yield stress is sufficiently small that the entire
droplet yields under capillary action at t = 0 and then spreads much like a Newtonian
droplet. Subsequently, however, the yield stress comes into play as driving stresses decline,
and eventually the droplet brakes to rest. Distinctive spatial oscillations appear near the
edge of the droplet, becoming frozen into the final shape as flow ceases. These undulations
also appear in the Newtonian problem and have been reported previously for viscoplastic
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films (Balmforth, Ghadge & Myers 2007b; Jalaal & Balmforth 2016). We discuss them
further below and in greater detail in appendix A.

The solutions are much the same, though wider and flatter, with gravity (B > 0).
Figures 2(b) and 2(c) show time series of the edge R(t) for further solutions with different
parameter settings. Here, the edge is measured for numerical convenience as the first
location R(t) where h(R, t) = h∞. With J = 0, the edge continues to expand; the yield
stress, however, inevitably brings fluids to rest.

3.2. Final shapes
A viscoplastic droplet comes to rest when Y → 0, implying h|pr| = J , which comprises
a third-order differential equation for the final profile in view of (3.1a,b). A complication
in solving this equation is the presence of the factor |pr|, which leaves open the sign of
the pressure gradient. To determine this sign, we appeal to the evolution equation (3.1a,b)
and the limit of its solution as the fluid comes to rest. In particular, over the bulk of the
droplet, the sign of −pr corresponds to the sense of the flux, which must be positive. Near
the edge, however, the spatial oscillations complicate matters. There, as is clear from the
magnification in figure 2(a), the undulations correspond to a travelling wavetrain such that

ht → −Rthr ∼ 1
6 [prY2(3h − Y)]r. (3.3)

Integrating this equation and observing that h → h∞ for prY2(3h − Y) → 0, we find that
the sign of −pr must be given by the sign of h − h∞. Thus,

hrrr + 1
r

hrr − 1
r2 hr − Bhr = J

h
sgn(h − h∞). (3.4)

3.2.1. Gravity-dominated limit
In the gravity-dominated limit, the higher derivatives disappear from the left-hand side of
(3.4), leaving −hhr ∼ J /B (since h ≥ h∞). Thence

h =
[

h2
∞ + 2J

B (R − r)
]1/2

(3.5)

(cf. Blake 1990; Roussel & Coussot 2005; Balmforth et al. 2006). The corresponding
droplet volume must be V = 2πL3 ∫ R

0 [h(r) − h∞]r dr, which demands that the final
radius satisfy the algebraic problem

R ≡ Rf

L =
(

25B
8J

)1/5 [
(1 + A)5/2 − 1

2
A3/2(2A + 5) − 15

8
A1/2

]−2/5

, A = Bh2∞
2J R

.

(3.6a,b)

The solution can be written formally as Rf /L = Ωg(h∞
√B/J )B1/5J −1/5 in the manner

of (2.4). Notably, when h∞ → 0, one obtains Ωg → (25/8)1/5 ≈ 1.26.

3.2.2. Finite B
Away from the gravity-dominated limit, we must attack (3.4) numerically. For a pre-wetted
film with finite thickness, the boundary conditions are the symmetry condition hr(0) = 0
and the far-field condition, h → h∞ for large radii. The latter requires the imposition of
two conditions in order that the droplet profile meets the pre-wetted film continuously.
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Figure 3. (a) A final equilibrium profile for (J ,B, h∞) = (1.25, 0, 0.01). (b) A magnification near the edge
is shown, along with hrr. The dashed lines show the final snapshot of the numerical solution of the evolution
equation from figure 2(a).

Given the form of the solution at the edge, we choose h(R∗) = h∞ and hrr(R∗) = 0, where
R∗ denotes a radius well into the decaying undulations. Applying this boundary condition
corresponds to pinning the solution at a point further along the wavetrain. In addition, we
must also arrive at the correct droplet volume. Thus, the third-order equation (3.4) must
be solved subject to three boundary conditions and the volume constraint, demanding that
the edge position R∗ be found as part of the solution (i.e. an eigenvalue). Appendix A
describes further details of the numerical construction of the final profile, as well as a
more detailed consideration of the undulations at the edge.

Figure 3 shows a sample numerical solution with B = 0. This particular example
corresponds to the solution of the evolution equation in figure 2(a), and is compared with
the final snapshot of that computation in figure 3. The decaying undulations converge to
a sawtooth wave in hrr, with the corners corresponding to the sign switches of h − h∞.
Unlike the decaying capillary waves of moving Newtonian contact lines, which have fixed
wavelength (Tanner 1979; Tuck & Schwartz 1990; Jalaal et al. 2019b), the viscoplastic
undulations shorten with distance along the wavetrain. In appendix A, we outline how
the waveform converges to piecewise-cubic polynomials, with an accumulation point at a
finite outer radius.

The analysis of the edge behaviour in appendix A also indicates that the wavetrain
shrinks to a point in the limit h∞ → 0. Moreover, the limiting solution corresponds to
solving (3.4) with outer boundary conditions based on the local solution h ∼ C(R − r)3/2

for r → R and an unknown constant C. Figure 4 illustrates such limiting profiles for various
values of the gravity parameter. Evidently, since hr(R) = 0, the limiting contact angle is
zero here, implying spreading over a perfectly wetting surface (although one can also solve
(3.4) with a prescribed contact angle).

From the computed solutions for final equilibrium profiles, we may evaluate the final
radius and depth, which are given by the (fairly complicated) algebraic problem outlined
in appendix A. For the final radius, the formal solution may be written as

Rf

L = Ω

( B
J 2/7 ,

h∞
B

)
J −1/7, (3.7)

which identifies the dependence of the coefficient on gravity and the prewetted film
thickness. The prefactor Ω(BJ −2/7, h∞/B) is shown in figure 5. In the limit h∞ → 0, the
function Ω(x, 0) is shown in more detail in figure 4(b); one can see that Ωc ≡ Ω(0, 0) ≈
1.74 and Ω(x, 0) → (25x/8)1/5 for x � 1, which aligns with the result in § 3.2.1.
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Figure 4. (a) Equilibrium profiles for h∞ → 0 with R2B = 0, 10, 30, 100 and 300, together with the limit
B → ∞ given by (3.5). The dots show the approximation (1 − r2)3/2. (b) The coefficient Ω(x = BJ −2/7, 0)

in (3.7), along with the limits for x = 0 and x � 1.
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h∞/B BJ–2/7

Ω

Figure 5. The function Ω(BJ −2/7, h∞/B) in (3.7) plotted as a surface over the (BJ −2/7, h∞/B) plane.
The dashed line shows the result from figure 4(b).

4. Numerical simulations

To complement the lubrication analysis, we solve the spreading problem numerically
away from the shallow limit using the open-source code Gerris (Popinet 2003). The
code employs a volume-of-fluid scheme to deal with the interface and an adaptive grid
to achieve high resolution inside the droplet and along its interface (see appendix B for
more details). For the rheology, we use the regularized Bingham model with

τij = μ1γ̇ij, μ1 = min
(

τ0

γ̇
+ μ, μmax

)
γ̇ij, (4.1a,b)

where

γ̇ij = ∂ui

∂xj
+ ∂uj

∂xi
, γ̇ ≡

⎛
⎝1

2

∑
i,j

γ̇ijγ̇ji

⎞
⎠

1/2

(4.2a,b)

(cf. O’Donovan & Tanner 1984). Here, the divergence of the viscosity at low shear rates
is controlled by the regularization parameter, μmax, chosen sufficiently large to render the
simulations insensitive to the precise value (see appendix B). We use a parabolic initial
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Figure 6. Distribution of log10(γ̇ ) in a spreading viscoplastic droplet for J = 0.144, B = 0 and
h∞ = 0.0175, at the times t = 0.29, 87, 290, 580, 1450, 2030 (a– f , respectively).

shape for the droplet, merged to a flat pre-wetted film, motivated by the experimental
profiles observed in § 5:

h(r, 0) = h∞ + (2/3)1/3 max(0, 1 − (r/R0)
2), with R0 = (2/3)1/3. (4.3)

The simulation includes inertia, allowing us to take the velocity field to be zero at t = 0.
However, for the physical parameters studied here, the effect of inertia is always small.

Figure 6 shows an example for J = 0.144, B = 0 and h∞ = 0.0175, plotting snapshots
of the interface with superposed density maps of γ̇ . Initially, the surface tension arising
due to the high curvature at the edge of the droplet drives flow, flattening the entire profile
over later times. Throughout, a plug remains at the core of the droplet (marked as zone I
in figure 6b), much like in the gravity-driven problems explored by Liu et al. (2016, 2018).
Once the droplet becomes shallower, a further region of low strain rates forms close to
the interface (denoted as zone II in figure 6c), resembling the pseudo-plug region of the
lubrication analysis. As the droplet brakes to rest, the regions of small strain rate broaden
to span the droplet, with a train of undulations appearing at the edge as in the lubrication
analysis (see appendix B and figure 12). We calculate final shapes for a range of J and B,
and later, in § 6, we compare them with those obtained from the lubrication analysis and
the experiments.

5. Experiments

We experimentally study the spreading of viscoplastic droplets by extruding them
from a syringe onto a pre-wetted surface. The experimental apparatus consisted of a
hydrophobic nozzle (with inner diameter of 0.3 mm) connected to a syringe pump (KD
Scientific-Legato 111), where the vertical location of the nozzle could be adjusted using a
translation stage. Chemically treated glass slides were used to suppress any slip over the
underlying surface (see Jalaal et al. (2015) for details). To form the pre-wetted film, spacers
of a given height (adhesive tape of ∼60 μm thickness) were placed on either side of the
surface, and a mound of the fluid was spread out evenly with a flat blade. The experimental
set-up is sketched in figure 7(a).

To minimize inertial effects, we slowly extruded the droplets on the surfaces. The nozzle
tip was placed 200 μm above the film, and droplets of different volumes (V = 0.0042 to
1.4367 ml) were deposited. In all experiments, the extrusion flow rate was 2 ml min−1.
The shapes of the droplets during spreading were recorded using side imaging, a cold
light-emitting diode illuminating the test section, and images were recorded with a
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Figure 7. (a) Schematic picture of the set-up for the extrusion tests, where the nozzle tip is placed just above
the substrate. (b) Flow curves of the fluids used in the tests on a log–log scale. The black curves show the
Herschel–Bulkley fits.

Sample number n K (Pa sn) τ0 (Pa) G (Pa)

1 0.541 0.834 1.01 9 ± 2
2 0.437 2.455 5.03 33 ± 2
3 0.448 4.579 10.82 57 ± 1
4 0.410 8.354 16.60 64 ± 1
5 0.427 10.080 25.46 66 ± 1

Table 1. Properties of the experimental fluids.

high-speed camera attached to a microscope. The shape and volume were obtained through
image processing.

The working fluids were aqueous suspensions of Carbopol Ultrez 21 (by Lubrizol),
neutralized with triethanolamine. The rheology of the fluids was characterized using
controlled shear-rate tests with an Anton Paar (Physica MCR-302) rheometer fitted with
sand-blasted (PP25-S) parallel plates (roughness of ∼4 μm). Figure 7(b) shows the flow
curves of the five concentrations of Carbopol used, plus Herschel–Bulkley fits of the form
τ = τ0 + Kγ̇ n to the measured shear stress τ and shear rate γ̇ . The fitting parameters
(yield stress, consistency index K and flow index n) are provided in table 1, supplemented
by estimates of the elastic modulus G found from constant, low-shear-rate tests (monitoring
the stress growth with strain).

The density of the solutions is very close to that of water. Measuring the surface tension
of yield-stress fluids is challenging. For Carbopol solutions, reported values vary over a
range of ∼51–69 mN m−1 (Manglik, Wasekar & Zhang 2001; Boujlel & Coussot 2013;
Géraud et al. 2014; Jørgensen et al. 2015). Here, we did not measure the surface tension
of our samples and used the fiducial value of 63 mN m−1 as the rough average of all the
reported values.

Figure 8(a) displays an example extrusion test. A small droplet forms at the beginning of
the injection and grows in time as the pumping continues. When the pump is switched off,
the droplet keeps spreading freely until reaching the final state. Figures 8(b) and 8(c) show
results from tests for a given B at different J (same volume with different yield stress).
As expected, an increase in the magnitude of J results in a smaller final radius of the
droplet. Note that the photographs of the final shapes were taken 30 s after the extrusion
commenced, to ensure the equilibrium shape was reached. Although some success has
been enjoyed with Newtonian fluid (Jalaal et al. 2019b), we were also unable to clearly
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Figure 8. (a) An example of an extrusion test for B = 1.286 and J = 0.463. Droplets start to grow with
the pumping and reach a final shape quickly after the extrusion is over. Snapshots are at t = 0, t = 1.5, t = 3
and t = 4.5 s, respectively (see supplementary movie 1 available at https://doi.org/10.1017/jfm.2020.886). The
surface is pre-wetted with h∞ ∼ 300 μm. (b) The variations of the radius of droplets over time. Pumping is
terminated at ∼3.5 s. (c) The final state of the droplets, corresponding to coloured dots in panel (b).

visualize any finer structure at the droplet edge such as the undulations that emerge in the
lubrication theory and numerical simulations.

Experiments were conducted for different J (by changing the yield stress; cf. figure 7b)
and B (by changing the droplet size), achieving 18 different parameter settings in total, as
restricted by the limitations outlined below (cf. inset in figure 9). The experiments were
repeated (at least five times) for each data point, and the average values were calculated.
The standard deviations (resulting from the accuracy of the image processing and the
repeatability of the tests) are small (∼5–7 %) for the majority of the extrusions. The
standard deviation is, however, larger, ∼15 % at the lowest values of B since the drops are
smaller and controlled deposition is harder. Note that the dimensional groups have limited
ranges: to attain small values of B, we had to extrude a small volume, promoting the effect
of the nozzle. For larger values of B, with our lowest yield stress, the droplets acquired a
very large footprint that exceeded the boundary of the biggest chemically treated substrate
available to us.

6. Discussion and conclusion

Figure 9 summarizes our results for the dimensionless final radius Rf /L obtained from the
lubrication theory, numerical simulations and experiments. In the simulations, the value
of the pre-wetted film is set at h∞ ≈ 0.0175. In experiments, we measure this value to
be h∞ ≈ 0.07 ± 0.03. The results of the lubrication theory are shown for h∞ → 0. The
three sets of results show broad agreement with the predictions of scaling theory, and, in
particular, the trends J −1/7 and J −1/5 predicted in the capillary- and gravity-dominated
limits.

Although the theoretical and experimental results mostly overlap in figure 9, there are
discrepancies. First, for the range of B explored here, from figure 5, we see that the
prefactor increases by approximately 10 % if one increases the pre-wetted film thickness
from the limit h∞ → 0 up to h∞ = 0.0175. Consequently, the results from the lubrication
theory should be approximately 10 % higher in figure 9 to match up properly against
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Figure 9. Comparison of the experimental and theoretical results of the final radius for different J and B.
Grey lines are asymptotic for h∞ → 0. The inset shows the dimensional final radius for different yield stress
and volume. The asymptotic and simulation results for B = 0 and B = 0.14 were so close that we just show
the former for clarity.

the simulations. Evidently, the asymptotics overpredict the final radii, a discrepancy that
must originate in the shallow approximation of the lubrication analysis.

Besides this, the experimental data also fall somewhat below the results from the
simulations. This is surprising given that the pre-wetted film thickness in the experiments
is larger than that used in the simulations, and a larger film thickness is expected to furnish
larger final radii. In other words, the experimental drops definitely do not spread as far
as suggested by the simulations. This second discrepancy might have several origins. For
instance, in our simulations, we modelled a freely spreading droplet. In the experiments,
however, the droplets are extruded on the surface from a syringe. The deposition method
might therefore be responsible. The difference is, in fact, more pronounced when the yield
stress is stronger (larger values of J ), as also notable in figure 9. Indeed, in the simulations
with the largest yield stresses, not all of the droplet yields during spreading, leaving intact
significant plugged regions. By contrast, the action of extruding the Carbopol through the
syringe forces the fluid to yield everywhere.

The fact that the flow history may impact the final state through the evolution of the
plugged regions raises a second potential source for the discrepancy: the simulations
exploit the Bingham model whereas the Carbopol suspensions clearly have a nonlinear
plastic viscosity (see the Herschel–Bulkley fits in table 1). The shear-thinning viscosity
may impact the final state by affecting the evolution of the plugs, even if that
rate-dependent effect is not expected to contribute to the final force balance, or by affecting
the dynamics at a nearly singular contact line (cf. King 2001a,b; Rafaï, Bonn & Boudaoud
2004). Worse, Carbopol is not an ideal yield-stress fluid. In particular, this material has
been reported previously to be viscoelastic and sometimes thixotropic (Coussot et al.
2002; Luu & Forterre 2009; Balmforth et al. 2014; Coussot 2014; Dinkgreve et al. 2016;
Fraggedakis, Dimakopoulos & Tsamopoulos 2016; Bonn et al. 2017), all of which might
contribute to the discrepancy in final radii.

In addition to the points above, there are some other technical difficulties in the
experiments that might be responsible. At the lowest J , the nozzle may have affected the
spreading and final shape, especially when the droplets were small. Moreover, there are
uncertainties in the experimental values of the surface tension coefficient and yield stress
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Spreading of viscoplastic droplets

that may affect the dimensionless parameters. Additionally, these values are measured for
a liquid bulk and it is not clear if they hold for small and confined geometries (e.g. Geraud,
Bocquet & Barentin 2013).

To conclude, in this paper, we have studied the spreading of a viscoplastic droplet
on a thin film. In contrast to Newtonian droplets, a viscoplastic droplet spreading on a
pre-wetted surface reaches a final shape, suggesting a practical means to control the final
radius by tuning the yield stress. To gauge that final radius as a function of the physical
parameters of the problem, we have provided simple scalings laws, a lubrication theory
for shallow droplets, numerical simulations for deeper droplets and experiments with a
Carbopol gel. Our study has direct applications in many industries, such as 3-D printing
and coating processes, in which the spreading of droplets of yield-stress fluid plays a
key role. Possible extensions of our work include the development of frameworks for
more complicated constitutive models such as elastoviscoplastic models (e.g. Saramito
2007; Fraggedakis et al. 2016; Dimitriou & McKinley 2019; Oishi, Thompson & Martins
2019a,b), and the use of more advanced experimental tools to accurately measure droplet
height and visualize the internal flow field.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2020.886.

Acknowledgements. M.J. acknowledges the support of the Natural Sciences and Engineering Research
Council of Canada through a Vanier Canada Graduate Scholarship.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Maziyar Jalaal https://orcid.org/0000-0002-5654-8505;
Boris Stoeber https://orcid.org/0000-0003-0230-238X;
Neil J. Balmforth https://orcid.org/0000-0002-1534-9104.

Appendix A. Viscoplastic final shapes and contact lines

A.1. Computational details
We may streamline the path to the solution of (3.4) by introducing the new variables ξ =
r/R∗ and η(ξ) = h(r)/h(0). The task is then to solve

η′′′ + ξ−1η′′ − ξ−2η′ − R2
∗Bη′ = Λ∗

η
sgn(η − ĥ∞) (A1)

with eigenvalue and film thickness parameter

Λ∗(R2
∗B, ĥ∞) = R3∗J

[h(0)]2 and ĥ∞ = h∞
h(0)

(A2a,b)

respectively, and the boundary conditions

η(0) = 1, η′(0) = 0, η(1) = ĥ∞ and ηrr(1) = 0. (A3a–d)

From this solution, we may then find η∗, the first (scaled) radial position where η(ξ∗) =
ĥ∞, corresponding to r = R. A simple rescaling then provides h/h(0) as a function of r/R,
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from which we may compute the functions

Λ(R2B, ĥ∞) = Λ∗(R2
∗B, ĥ∞) and I(R2B, ĥ∞) =

∫ R
0 [h(r) − h∞]r dr

R2h(0)
. (A4a,b)

We use MATLAB’s boundary-value-problem solver BVP4C to solve (A1). To further
ease the computation, we smooth out the switch of sign on the right-hand side using
the function tanh[Ξ(η − ĥ∞)], with Ξ = 106, which is sufficiently large to ensure the
solution details are insensitive to the precise value. For the initial guess for the solver, we
use either a final snapshot from the solution of the evolution equation, or continuation from
a equilibrium profile with different parameter settings. For the solution shown in figure 3,
the initial guess is taken from the final snapshot in figure 2(a), and contains a sufficient
number of undulations at the edge such that the solver converges to an equilibrium profile
with five switches of sign of h − h∞. The slight smoothing of those switches is visible
in the plot of hrr at the right of figure 3(b). To map out the functions Λ(R2B, ĥ∞) and
I(R2B, ĥ∞), as required below, we accelerate the computations by using a shorter initial
guess with only three sign switches.

The final step is to consider the volume constraint, which becomes

V = 2πR2
f HfI(R2B, ĥ∞). (A5)

In conjunction with (A2), we may then write

Rf

L =
(

4Λ

9I2

)1/7

J −1/7 and
Hf

L =
(

8
27Λ2I3

)1/7

J 2/7. (A6a,b)

The dependence of the function Λ over I on the arguments R2B and ĥ∞ ≡ h∞L/Hf
ensures that these relations constitute a pair of implicit algebraic equations for R = Rf /L
and Hf /L. Moreover, the relations in (A6) indicate that the functional dependence on the
parameters of the problem is through the combinations BJ −2/7 and h∞J −2/7 (or h∞/B),
as in (3.7). Alternatively, one can map out the two functions on the (R2B, ĥ∞) parameter
plane, and then interpolate onto a grid of the physical parameters, BJ −2/7 and h∞/B, as
done in figure 5.

A.2. Edge structure
To analyse the structure at the edge, we consider the limit h∞ � 1 and then resolve
the narrow undulations there by introducing the new variables G(ζ ) = h/h∞ and ζ =
(r − R)(J /h2∞)1/3. For finite B and to leading order, we then find

Gζ ζ ζ = 1
G sgn(G − 1). (A7)

For G → 1, (A7) further simplifies to

Gζ ζ ζ = sgn(G − 1). (A8)

The wavetrain therefore limits to a sequence of cubic polynomials, patched together to
make the solution and its first two derivatives continuous, as illustrated in figure 10. The
approach to the pre-wetted film G = 1 is thereby achieved by passing through an infinite
sequence of switches in the sign of G − 1, with the second derivative Gζ ζ taking a decaying
sawtooth waveform.
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Spreading of viscoplastic droplets

In + 1

ζn + 1

I*
n

ζ*
n

In

ζn

G

G = 1

ζ

Figure 10. A sketch of the decaying undulations at the edge.

We split up the wavetrain into the intervals {In} and {I∗
n } between the sign switches of

G − 1. The nth interval over which G > 1 is In = [ζn, ζ
∗
n ], and the following one, where

G < 1, is I∗
n = [ζ ∗

n , ζn+1]. We then write

In: G = 1 + G′
n(ζ − ζn) + 1

2G′′
n (ζ − ζn)

2 + 1
6 (ζ − ζn)

3,

In
∗: G = 1 + G′

n+1(ζ − ζn+1) + 1
2G′′

n+1(ζ − ζn+1)
2 − 1

6 (ζ − ζn+1)
3,

}
(A9)

where primes denote the spatial derivatives with respect to ζ and the subscripts refer to
the locations ζn where they are evaluated. Matching these solutions together at ζ ∗

n leads to
a system of algebraic equations:

G′
n + 1

2G′′
n zA + 1

6 z2
A = 0,

G′
n+1 + 1

2G′′
n+1zB − 1

6 z2
B = 0,

G′
n + G′′

n zA + 1
2 z2

A − G′
n+1 − G′′

n+1zB + 1
2 z2

B = 0,

G′′
n + zA + zB = 0,

zA = ζ ∗
n − ζn, zB = ζn+1 − ζ ∗

n .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A10)

For large n, we seek the solution in the form

G′
n ∼ �2naβ2, G′′

n ∼ �nβ, zA ∼ �nβb,

G′
n+1 ∼ �2n+2aβ2, G′′

n+1 ∼ �n+1β, zB ∼ �n+1βc,

}
(A11)

where β is an arbitrary amplitude that must be fixed by matching to the solution at the
beginning of the wavetrain. The remaining constants satisfy

a + 1
2 b + 1

6 b2 = 0, a + 1
2 c − 1

6 c2 = 0,

a + b + 1
2 b2 − a�2 − cr2 + 1

2�2c2 = 0, 1 + b − � + �c = 0.

}
(A12)

These equations have a single set of valid solutions with � < 1 (so that the undulations do
not diverge), with

� = 7
2 − 3

2

√
5 ≈ 0.14, a = 0.312, b = −1.38, c = 3.618. (A13a–d)

Moreover, the distance along the wavetrain is given by

ζn ∼ β(b + c�)

n∑
m=0

�m. (A14)
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Figure 11. An example of numerical grids, where the maximum level in the grid generation was eight over
the interface of the droplet. Inside the droplet, the level of grids was always larger than six. The interface
corresponds to the case of J = 0.144 and B = 0 at t = 1. The magnified view of the grids around the edge of
the droplet is shown on the right.
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μmax/μp = 100

μmax/μp = 1000

μmax/μp = 104

μmax/μp = 105

(a) (b)

Figure 12. Effect of regularization parameter on the Gerris simulations. Results correspond to J = 0.144,
B = 0 and h∞ = 0.0175.

This geometric series has the finite limit

Lim
n→∞ ζn = β(b + c�)

1 − �
= −β, (A15)

implying the wavetrain ends at finite radius.
The preceding analysis establishes that the solution for the wavetrain has a

bounded solution in terms of the rescaled variables ζ and G. In the limit
h∞ → 0, the wavetrain therefore shrinks to a point. Moreover, given (h, hr, hrr) =
(h∞G,J 1/3h1/3

∞ Gζ ,J 2/3h−1/3
∞ Gζ ζ ), the solution for r < R must approach the edge with

(h, hr) → 0 for r → R, but a diverging second derivative. Analysis of the singular point
of (3.4) at r = R then establishes the local solution used in § 3.2.2 to compute the solution
for h∞ → 0.

Appendix B. Gerris simulations

The details of the Gerris simulations can be found in Jalaal (2016). We use a rectangular
domain that is sufficiently large to eliminate the influence of the outer radial and top
boundaries; see figure 11, which illustrates the adaptive gridding for an evolving solution.
Symmetry and no-slip boundary conditions were applied along the centreline and bottom
surface, respectively. ‘Outflow’ conditions were applied on the other two boundaries.
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Spreading of viscoplastic droplets

We set the density and viscosity of the ambient medium above the viscoplastic fluid to
be 10−2ρ and 10−2μ, respectively, which ensures that this fluid does not influence the
dynamics (as confirmed through a number of other simulations, changing the density
and viscosity ratios from 0.1 to 0.002). The computations are continued until the value
of kinetic energy fell below 10−6σL2, at which point a quasi-steady shape was largely
established and before any residual spreading arose due to the regularized viscosity μmax.

To verify that the simulations were independent of the regularization parameter, we
conducted numerical simulations for different μmax and established that the changes to
the final shapes were insignificant for μmax/μ > 104. Figure 12 shows an example of final
shapes for different regularization parameter.
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