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The impingement of a liquid jet onto a moving wall can lead to deposition in which fluid spreads into a steady, U-shaped
lamella. Experiments are conducted using a rotating disk that can produce jet Reynolds numbers 15 < Re; < 16,000
and wall-to-jet velocity ratios 0.04 < u,,/v ;7 < 14, under conditions under where the effects of surface tension and
gravity are relatively minor. High speed video and Laser-Induced-Fluorescence are used to measure the geometry of
the impinging jet. The experiments are complemented with numerical simulations, which reveal the anatomy of the
lamella: the jet is diverted sideways by pressure gradients over an impact zone that has a radius of order the jet diameter.
Viscous stresses play little role in the diversion of incoming fluid, but act outside the impact region to turn the flow
towards the direction of motion of the wall. A fraction of the viscously redirected fluid is thereby taken back underneath
the jet, cushioning its impact. Eventually, the fluid enters a downstream region of almost uniform depth wherein all
the fluid is conveyed with the wall. A simple model is proposed to rationalize the U-shape of the lamella, fixing that
footprint by arguing that this arises where the radially symmetric, viscously modified outflow from the jet matches the
wall velocity. The simple model predicts the dimensions of the lamella (the length of the upstream heel and the width
of the downstream lamella), and that the shape takes a universal form when scaled by one of these distances. These
predictions agree well with the experiments and simulations, except when the heel becomes excessively small.

location) that sets the scene for the appearance of hydraulic

The impingement of a circular liquid jet on a stationary
surface has been studied extensively: Schach!' presented a
theoretical analysis of the potential flow problem for invis-
cid jet impingement, with later developments presented by
Refs. 2-4. Subsequent work>™ considered the impact of
viscosity, gravity and surface tension within the framework
of boundary-layer theory, predicting the position where a hy-
draulic jump forms due to a downstream obstruction.

The axisymmetry of circular liquid jet impingement can be
broken in several ways. For example, Kate et al.!” studied
the impact of a jet impinging at an angle to the substrate, and
Wilson and co-workers have explored the action of gravity on
the impingement of a horizontal jet onto a vertical wall'!~!3,
Here, we consider how the circular symmetry is broken when
a liquid jet impinges onto a moving wall, continuing on from
a previous study exploring the corresponding planar (i.e. two-
dimensional) problem.'*!> Such problems are of interest to a
variety of industrial applications, ranging from surface coat-
ing, cooling and cleaning!'®2" to the deposition of liquid fric-
tion modifiers in the railroad industry?!-?2,

At very low Reynolds numbers, viscous stresses bend the
jet before it makes contact with the wall, and instabilities anal-
ogous to elastic buckling lead to a variety of patterns that have
been referred to as a “fluid mechanical sewing-machine”>324,
At much higher Reynolds numbers, the jet remains largely
unaffected by viscosity, with impact pressures diverting the
incoming fluid into a spreading sheet. In this situation, one
expects two possible outcomes: splash, or the deposition of
a thin film (a lamella) onto the moving surface. Moreover,
once viscosity exerts its effect on any lamella, the recircula-
tion of fluid back towards the jet forms a downstream obstruc-
tion (relative to the jet motion away from the impingement

jumps. Previous experiments have, indeed, observed these
different possible outcomes>>—3.

Much of the previous work has focused on transition from
deposition to splashing, categorizing the impact of the speed
and properties of the incoming liquid jet, the speed and rough-
ness of the wall, and the ambient air pressurezs‘zg. Our focus
here is rather on the deposition regime under conditions where
surface tension and gravity are less significant, for which pre-
vious experiments have indicated that the fluid spreads into a
distinctive U-shaped lamella reminiscent of the Rankine half-
body in potential flow??°. In this setting, and given the jet
diameter and speed, d and v;, the wall speed, u,,, and the fluid
density and viscosity, p and u, the two key dimensionless pa-
rameters that control the problem are the jet Reynolds number
Rej = pv;d/u, and the velocity ratio u,,/v;.

We use a combination of laboratory experiments and nu-
merical simulations to explore the regime of steady deposi-
tion. Our first goal is to establish a regime diagram on the
(Rej,u,/vj) plane that identifies where jet impingement onto
a moving surface creates a steady U-shaped lamella. We fur-
ther focus on situations in which viscous stresses are suffi-
ciently strong and wall speeds are sufficiently high that turbu-
lence and hydraulic jumps are mostly avoided. The U-shaped
lamella then adopts a relatively simple structure that we char-
acterize in detail. In particular, we observe that the lamella
downstream of the jet is relatively flat and the U-shape has
a scale that varies with Re; and u,,/v; but otherwise takes a
nearly universal form (somewhat like the Rankine half-body).

In Section II A, we describe the experimental approach.
The numerical method is summarized in Section II B. We re-
port the observed phenomenology of the jet impact and the
regime diagram in Section III. A simple model that captures
the U-shape of the lamella is formulated in Section IV. We
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compare the model predictions and the results from the ex-
periments and simulations in Section V. We close with brief
conclusions, open questions and suggestions for future work
in Section VL.

1. METHODOLOGY
A. Experimental Approach
1. Apparatus

As sketched in Fig. 1, the experiment consists of a disk spun
on a horizontal axis, an accumulator attached to a nozzle as-
sembly, high-speed cameras, and laser optics. The different
experimental components are controlled via LabVIEW. All
experiments are conducted at an atmospheric air pressure of
101 £+ 1.5 kPa.

<*""Imaging
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FIG. 1: Sketch of the experimental arrangement and an
image from a typical experiment taken through the
transparent polycarbonate disk.

The rotational speed of the disk is set using the variable
frequency drive (VFD) on an electric motor. The VFD motor
can drive the disk at an angular velocity Q ranging from 50
to 2000 RPM, giving a local surface speed of 0.94 to 63 m/s
at the impingement point, which lies at a radius of R = 30 cm
from the centre of the disk. The rotational speed is measured
using a digital hand-held tachometer (Fisher Scientific model
No.0502824) with uncertainty of +1 RPM.

For each experiment, the accumulator is first charged with
test liquid and then pressurized to a set value by means of a
compressed air cylinder and regulator. A solenoid valve is
then opened to allow the liquid through the nozzle. To avoid
any initial transients, the jet is initially redirected away from
the disk by means of a deflector; 1.5 s after the solenoid valve
is opened, the deflector is retracted and the jet is allowed to
impinge on the spinning disk. Simultaneously, high speed
cameras record the impingement process and a WIKA type
A-10 pressure transducer behind the nozzle records the back
pressure. The solenoid valve closes after the jet has impinged
on the disk for one revolution. Following each test, a water jet
is used to clean any liquid from the disk, which is then dried
with a microfiber cloth.

Two interchangeable disks, 63 cm in diameter and 1.5 cm
in thickness, are used. One disk is made of polished steel with
a surface roughness of 1.8 pm on one half, and a mirror fin-
ish with surface roughness of 0.17 yum on the other half. The
second disk is transparent and made of polycarbonate with a
surface roughness of 0.13 um. These arithmetic mean rough-
ness values are measured by scanning a 0.5 x 0.5mm? sam-
ple surface with an Olympus LEXT OLS3100 confocal mi-
croscope. Switching the disks allows for testing on different
surfaces and imaging from different angles. In particular the
transparent disk allows imaging through the disk to determine
the entire footprint of the lamella and its profile using laser
induced fluorescence (LIF), as described below.

The nozzle assembly includes one of three interchangeable
nozzle tips, with orifice diameters of d, = 810, 890, 1320 um,
that generate liquid jets of diameters d = 760, 830, 1230 pm,
respectively, as measured optically. These jet diameters are
independent of the tested fluid and nozzle back pressure, pre-
sumably because the jet Reynolds numbers are sufficiently
high that the vena contracta is constant. The jet velocity v;
ranges from 2.6 m/s to 21 m/s. Further information about the
nozzles and jets is provided in Ref. 15, including the calibra-
tion curves between nozzle back pressure and flow rate. The
nozzle is positioned 5 cm away normal to the disk surface and
is orientated such that the jet impinges almost perpendicularly
(with an error of less than 4° due to gravity).

For the steel disk, two high speed cameras (a Phantom
V611 and a Phantom V7) record the jet impingement behav-
ior and the lamella simultaneously from different angles. One
camera is located slightly upstream from the jet and is ori-
entated towards the impingement location; the optical axis of
the second camera is orientated about 10° relative to the disk
surface to view the impingement region from the side. A high
intensity 6700 Lumen white LED array with collimating lens
illuminates the impingement area. The cameras record images
at 1280 pxx800 px resolution, with typical magnifications
corresponding with 20 um/pixel, as determined by imaging
a precision laser-engraved ruler.

For the transparent polycarbonate disk, a single high speed
camera is located on the backside of the transparent disk, ori-
entated along the axis of the jet. Fig. 1 shows a typical back-
view image and highlights the local Cartesian coordinate sys-
tem that we use to describe the geometry along with some key
length measurements: L and L,,. The heel length L is de-
fined as the distance from the center of the jet to the upstream
edge of the liquid lamella in the —x direction. The lamella
width L,, is defined as the widest portion of the lamella in the
y—direction.

The three different mixtures of water and glycerol in Ta-
ble I serve as Newtonian test liquids. Their fluid density p is
measured gravimetrically, and their viscosity u is determined
with an Anton-Paar Physica Modular Compact Rheometer
301. The measured density and viscosity are, respectively,
within 0.5% and 3% of those reported elsewhere’!.
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TABLE I: The composition and properties of test liquids at
23°C.

Glycerol concentration (wt%) Viscosity (mPa - s) Density (kg/m3 )

70 19.4 1180
80 50.7 1197
85 91.5 1215

B. Numerical Method

Three-dimensional simulations of a liquid jet impingement
on a moving wall are conducted with ANSYS Fluent (2019
R3 release). In this code, the coupling between pressure
p(x,y,z,t) and velocity u(x,y,z,t) is achieved with the SIM-
PLE algorithm, spatial discretization is implemented through
a second-order upwind scheme, and time discretization uses a
first-order implicit scheme.

The interface between the liquid of the impacting jet and the
surrounding air is tracked with the Volume of Fluid method
(VOF)*2. In VOF, the phase in each computational cell is
represented by the liquid volume fraction, a(x,y,z,7), where
0 < a <1 in any cell. A cell containing only liquid corre-
sponds to & = 1, and o = O represents a cell filled with air;
intermediate values of o indicate a cell that contains the in-
terface. The liquid volume fraction is advected with local
fluid velocity u, and the material properties in a cell are de-
termined by linear interpolation: p = (1 — a)par + 0p; and
i = (1 — &) Ugir + otpy. Practically, we adopt values for the
density and viscosity of the liquid phase to match the experi-
ments, taking those of the other phase to be characteristic of
air at room temperature. For the bulk of the simulations (all
results reported in Chapter §III and §V), we omit both gravity
and surface tension. However, in a small number of cases, we
include them to either gauge their effect (see §11C) or to more
carefully match physical conditions (§11 D), the ANSYS soft-
ware allowing the incorporation of surface tension through a
suitably defined body force33.

1. Computational domain and boundary conditions

The computational domain is a rectangular prism of size
20d x 7d x 4d. Fig. 2 shows the domain geometry and the as-
sociated boundary conditions. The domain is symmetric along
the y = 0 plane and extends 4d upstream and 16d downstream
from the impingement point at the origin. A semicircular jet is
injected from the top boundary in the (—z)-direction and the
bottom wall moves in the (+x)-direction. For the parameter
space of interest, this domain is large enough to capture the
entire upstream (against the motion of the wall) and lateral
spread of the lamella. The domain is also sufficiently large
in the downstream direction that viscous forces bring the en-
tire lamella to the wall speed before reaching the downstream
boundary.

The boundary conditions are as follows: along y = 0, sym-
metry conditions are applied. The moving wall is no slip:

3
z __ Velocity inlet
Symmetry conditions
\
4d - \
0- z
-4d _—

No-slip moving wall ,“‘”,/ s

—

[
Pressure-outlet conditions 16d -7d

FIG. 2: Computational domain and associated boundary
conditions. For clarity, the mesh shown is coarser than those
used in the computations.

u(x,y,0,¢) = (uy,0,0). Over the semicircular region of the
top boundary, r = \/x2 +y* < d/2 and z = 4d, the inflowing
jet velocity and volume fraction are prescribed: u(x,y,4d,t) =
(0,0,—v;)" and o(x,y,4d,t) = 1. Along all other boundaries,
pressure-outlet conditions are imposed, wherein the (gauge)
pressure is set to be zero and all other conditions are extrapo-
lated from the interior of the domain.

Computations are initiated with either no liquid from the
jet in the domain, or using the final solution from an existing
simulation with different parameter settings. The system of
equations are then integrated forwards in time until a steady
state is reached, or discontinued and rejected otherwise.

2. Meshing and mesh convergence

The computational domain is divided into cells using a
non-uniform hexahedral mesh that is finer around the liquid
jet (near r = d/2) and the lamella (near z = 0), while be-
ing coarser in areas that only contain air. Three grid reso-
lutions are used, denoted as Coarse, Medium or Fine. For
the Coarse grid, the mesh near the liquid jet forms an O-
grid with Ar = d/20; the mesh gradually transitions to one of
Cartesian-type and becomes fully Cartesian for |x|,|y| > 2d,
with Ax = Ay = d/10 on x < 2d. In the downstream direc-
tion (x > 2d), Ax gradually increases from cell to cell by a
factor of 1.05. Along the z-direction, the mesh resolves the
thin lamella: the cells adjacent to z = 0 have a vertical cell
size Az = d/20 and successive cell heights gradually coarsen
by a factor of 1.03 with increasing z. An even coarser version
of the grid is sketched in Fig. 2. The Coarse grid is refined
once by halving the cell size in each dimension to obtain the
Medium grid, and the Medium mesh is refined in the same
fashion to achieve the Fine grid. Several cases are simulated
with all three grids to study mesh convergence.

Before reporting the mesh convergence results, it is impor-
tant to appreciate that there is an issue associated with the
no-slip condition on the moving wall and our omission of any
contact-line physics, which prevents the liquid from the jet
from touching the moving plane. Instead, air unavoidably be-
comes swept along underneath the spreading liquid diverted
from the jet. This air layer becomes too thin to resolve in the
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FIG. 3: Vertical profiles of horizontal velocity along three
different vertical lines (as indicated) for the three grid
resolutions, with Re; = 155 and u,,/v; = 1.62.

computations, leaving an intermediate concentration within
the lowest grid cells. The mesh refinement studies reported
below indicate that the varying degree of resolution of the air
layer does not appear to affect the convergence of the numer-
ical solution elsewhere. The layer can also be artificially re-
moved by suitably resetting the concentration field in the low-
est grid cells. This device avoids any issues with spatial reso-
lution, at the expense of an apparent violation of mass conser-
vation, but again does not affect the solution elsewhere. Con-
sequently, the unresolved air layer appears to be a minor price
to pay for the the omisson of any contact-line physics. Never-
theless, numerical stability problems associated with the reso-
lution failure become severe for lower velocity ratios, leading
us to report results for only u,,/v; > 0.5.

The benchmark case for which we report mesh conver-
gence studies adopts the parameter values Re; = 155 and
uy/v; = 1.62. For the steady state reached in these compu-
tations, we compute the Grid Convergence Index** (GCI) for
a few physical quantities of interest. Between the medium
and fine grids, the GCI values for the heel length L, and
lamella width L,, are 2.66% and 1.51%, respectively. For the
velocity profiles along select vertical lines shown in Fig. 3,
the same GCI does not exceed 1%. We further observe that
the GCI between the coarse and medium grids is about four
times that between the medium and fine grids, indicating that
the asymptotic range of convergence is achieved with these
meshes (given an order of convergence of 2).

The air-liquid interface, identified by the surface where
a = 0.5, is plotted in Fig. 4 for the benchmark solutions on
the three meshes. The first two panels show the convergence
with refinement along sections through the heel and the down-
stream lamella at x = 8d. The air layer underneath the spread-
ing liquid is visible in the latter, particularly for the fine mesh
where the layer appears to break up into a series of distinctive
“bubbles.” The bottom panel shows the U-shaped footprint
of the lamella, again demonstrating convergence with mesh
refinement.

We conclude that mesh convergence is satisfactory from the
Medium to the Fine mesh. The simulations in the following
sections use the Medium mesh (where Az = d/40) to achieve

z/d

x/d

FIG. 4: Interface profiles for different grids with Re; = 155

and u,, /v 7 = 1.62, showing sections through (a) y = 0 and (b)

x = 8d, then (a) the U-shaped footprint of the lamella on the
(x,y)—plane. The vertical scale is exaggerated in (b).

a balance between computational resources and accuracy. In
a few cases where the lamella becomes very thin, the Medium
mesh is further refined in the z direction such that Az = d/80
and that in all the cases there are at least 4 layers of cells across
the thinnest part of the lamella. Even when the resolution be-
comes this poor, it arises well downstream where there is little
structure to the velocity field.

C. Dimensionless groups and confounding effects

A translation of the working dimensional parameters to
Reynolds number and velocity ratio indicates that the experi-
ments are conducted over the range,

ijd

15< Rej= "% < 13000 and 0.04 <™ < 14.

Vj

If o and g denote surface tension and gravity, we further es-
timate that the Weber number, We = pv%d /o > 10 (taking
o = 0.64 N/m), and Froude number, Fr = u,/\/gd > 20.
These relatively high values imply that the effects of surface
tension and gravity are less significant.

To explore the effect of surface tension in more detail,
we conducted separate simulations in which we set o =
0.64 N/m. Except for prompting a modest amount of capil-
lary retraction further downstream, these additional computa-
tions suggested that interfacial effects at the air-water inter-
face did not significantly impact the lamella dimensions. The
capillary retraction, arising for Capillary numbers of Ca,, =
Uu,, /o < 18, builds up an elevated ridge at the lamella’s sides,
and causes the maximum width to arise nearer the jet. Both
effects can also be visually observed in the experiments (with
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the retraction arising over distances comparable to the curva-
ture from disk rotation). The simulations indicate that surface
tension may reduce L,, by up to 5%.

More awkwardly, the Froude number Fr = u,,/+/gd > 20
estimates gravitational effects over distances of the jet diam-
eter d, whereas the typical span of the lamella over the verti-
cal surface of the disk is much greater. Nevertheless, even if
we replace the jet diameter by a typical lamella length (which
may be as much as 10d) in the Froude number, this dimen-
sionless estimator of gravitational effects still remains six or
more. Thus, although it is possible that gravity may begin to
affect the largest lamellas, it is unlikely to play a key role.
To further gauge the importance of gravity, we conducted ad-
ditional simulations in which gravity was included for a case
with a relatively large lamella (Re; = 525 and u,,/v; =0.5). In
particular, simulations were conducted including gravity, ori-
entating its direction in first the positive, and then the negative
x direction. These simulations, along with the corresponding
simulation omitting gravity altogether, displayed no signifi-
cant difference in lamella geometry.

The circular, rotating geometry of the spinning disk also
does not reproduce the rectilinear motion of our target model
problem. A measure of the effect of the Coriolis force experi-
enced on the spinning disk is provided by the Rossby number,

_ uw R 0.3
T 2dQ 24 0.001

Ro 300. (1)
Since Ro > 1, the effect of the Coriolis forces should be negli-
gible. In fact, to within experimental error, the lamella dimen-
sions match between jet impaction on the spinning disk and
on a surface moving rectilinearly (a belt sander), for a few
select experimental parameters settings (jet speed, wall speed,
jet diameter, etc.). Thus, the departure from rectilinear surface
motion is not important in our spinning disk experiments.

Finally, the experimental lamella appears to be independent
of the surface properties of the spinning disk: to within typi-
cal experimental errors, the dimensions L and L,, for exper-
iments on the mirror-finished surface of the metal disk are
the same as those on either the rougher surface or the poly-
carbonate disk. In other words, the corresponding surface
roughnesses have no impact on the lamella geometry, con-
sistent with the fact that flow is laminar and the characteristic
roughness height (0.17 um — 1.8 um) is rather smaller than
the lamella thickness.

D. Detailed comparison

Table II compares the dimensionless heel length L, /d and
lamella width L,,/d from five experiments with results from
simulations. The presented values for the simulations are
Richardson extrapolations>>, based on results computed with
the Medium and Fine grids. The five cases span a range of
operating parameters, all of which are matched in the simu-
lations, including surface tension and gravity towards the x-
direction. Except in a single case, the differences between
the simulations and experiments are less than 10%; the CFD
mostly predicts larger lamella dimensions.

Ill. PHENOMENOLOGY
A. Regime Diagram

Fig. 5 shows the observed behaviour on the steel disk with
the mirror surface. Three regimes are identified: steady depo-
sition, unsteady splashing, and a transitional regime between
the two. For steady deposition, the jet spreads out smoothly
to form a distinctive, U-shaped lamella, as reported previ-
ously and shown earlier in Fig. 1. During unsteady splash-
ing, the edge of the heel lifts up, then fragments to release
small droplets (see the snapshot of Fig. 6(a)). Over the transi-
tional regime, the flow alternates irregularly between smooth
deposition and splashing, as found by Keshavarz et al.?®. At
much higher Reynolds numbers, beyond the limits of the plot
in Fig. 5, the jet itself becomes turbulent and we have ob-
served bubbly turbulent bores upstream of the jet, as illus-
trated in Fig. 6(b) for an experiment conducted using water
(cf 25).

The transition between steady deposition and splashing
largely follows a contour of constant Re;(1+ u,/v;) (see
Fig 5). Because splashing arises when the heel lifts up, this
observation is consistent with the hypothesis, following clas-
sical arguments for drop impacts®, that the transition occurs
when the velocity difference between the fluid and the under-
lying surface (which is u,, + v; for the heel) reaches a critical
threshold, holding the properties of the ambient air and sur-
face tension fixed (see also Ref. 37). As this threshold is likely
sensitive to the surface properties of the disk and ambient air
properties®®, we have not tried to quantify the transition any
further experimentally; the regime diagram in Fig. 5 applies
only to the mirrored steel disk at standard atmospheric pres-
sure. We also avoided any detailed exploration of the transi-
tion using the numerical simulations, as the solutions did not
remain trustworthy when the dynamics become unsteady and
suggestive of splashing at higher Reynolds numbers and ve-
locity ratios.

B. Steady lamellae

Our main focus is on the regime of steady deposition; Fig.
7 presents a collage of images showing how the lamella struc-
ture varies as the operating parameters sweep across this area
of the regime diagram. A similar collection of interface pro-
files from the simulations is shown in Fig. 8. Both figures
indicate that the lamella dimensions L;, and L,, increase when
Rej increases, or as u,, /v j decreases.

For most of the regime (approximately 15 < Re; < 400
and 0.3 < u,/v; < 3), a steady heel forms upstream from
the impingement point, and the liquid spreads into a lamella
of nearly constant lateral width. Examples of this behaviour
may be seen in the middle columns of Figs. 7 and 8 (see
also Fig. 4). To the upper left-hand part of the deposition
regime (approximately Re; > 200 and u,,/v; < 0.3), the heel
develops an elevated rim, as observed for the top-left case
(Rej =200,u,,/v; = 0.3) in Fig. 7. For the simulations, sim-
ilar features also appear, although sometimes taking the form
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TABLE II: Experimental (Exp) results compared with simulation (CFD) results with matching operating parameters.

Rej uy/vi| Ly/d L,/d Rel Err.| L,/d L,/d Rel. Err.
(Exp) (CFD) (%) (Exp) (CFD) (%)
16 1.06|0.894+0.06 0.87+0.01 -2 2.80+0.14 2.61+£0.01 -7
73 0.84|1.34£0.06 1.56+0.01 16  |4.63£0.14 5.34+0.05 15
159 0.96|1.83+0.06 1.8440.01 1 6.05+0.14 6.51+0.03 8
158  2.89]|1.104+0.06 1.114+0.01 1 3.47+0.14 3.60+0.03 4
208 2.71|1.2440.06 1.25+0.01 1 3.851+0.14 4.19+0.08 9
296 1.03|2.154+0.06 2.30+0.01 7 7.14£0.14 7.66£0.02 7
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FIG. 5: Experimental regime diagram. The different regimes are described in the text. The blue line marks
[Re;j/(uy/vj)]'/3 = 2.5 (see §V). The green lines show the contours (14w, /v;)Re; = 700, 1000, 1300.

FIG. 6: Examples of (a) a splash at Re; = 619, u,,/v; = 0.44,
and (b) a turbulent bore at Re; = 5840, u,,/v; = 0.3.

of a stationary wavetrain (Fig. 8, top left). Finally, below the
blue line marked in Fig. 5 (which is rationalized in §V below),
the heel becomes relatively small, or even disappears, and the
lamella width approaches the jet diameter (lower right cases
in Figs. 7 and 8).

C. Lamella anatomy

Based upon the classical discussions of jet impact onto sta-
tionary walls, one expects the lamella to decompose into a
number of distinct regions with different dynamical charac-
ter. First, given the relatively high jet Reynolds number, the
incoming fluid is expected to be diverted into a radially outgo-
ing potential flow by high impact pressures. Second, outside
the impact zone, viscous stresses grow in importance, grad-
ually encroaching on the outflow from below and redirecting
fluid motion into the direction of the wall, thereby forming
the upstream heel. Unlike the traditional impingment prob-
lem in which the potential flow sits directly above a station-
ary wall, this viscous redirection also implies that a layer of
liquid must be carried back underneath the jet from the heel,
cushioning the impact. Last, far downstream (for x of O(Ly,)),
the lamella must approach constant width once all the fluid
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4.5 u /v

FIG. 7: Experimental lamella shapes at varying Re; and u,,/v;. The slight tilt of the jet in some images is caused by gravity as
the jet impinges horizontally. The tilt is less than 4°, and the perpendicular velocity component is below 0.2% of v;.

FIG. 8: Simulated lamella shapes for varying Re; and u,, /v;.

reaches the wall speed u,,. Mass balance at this stage sets the
average thickness of the lamellar 7 in terms of its width Ly :
h=nd?v;/(4usLy).

To confirm these expectations, we select three examples
with varying velocity ratio, u,, /v;, but fixed jet Reynolds num-
ber Re; = 137. These examples are presented in Figs. 9-11,
and correspond to cases with lamellae that are relatively wide,
typical and narrow, respectively. Cuts through the impact
pressure distribution that diverts the jet are shown along the
top row, scaled by % pv%. High pressure is restricted to the
region directly underneath the jet, falling quickly to ambient
values beyond. In the inviscid jet impingement problem for
a stationary wall,>* elevated pressures arise over an impact

zone with r = \/x?+y% < d. As seen in Figs. 9-11, the ex-
tent of the impact zone is similar for a viscous jet impinging
on a moving wall, although in the example with the fastest
wall speed (Figs. 11), the upstream diverted fluid is redirected
downstream before reaching such radii.

Streamlines drawn over the top surface of the lamella
(lower left panels) display the viscous redirection more
clearly: upstream of the jet axis (x < 0), a fraction of the fluid
elements within this surface turn and become tangential to the
edge of the lamella before proceeding underneath to create the
underlying return flow (see also the streamlines drawn in the
midplane y = 0 in panels (e)). The other streamlines remain on
the top surface and turn more gradually to the wall direction.
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FIG. 9: Simulation results for Re; = 137 and u,, /v, = 0.7. The pressure distribution is plotted along the top row, for (a)
z=10.04d, (b) y =0 and (c) x = 0. The black dots show select contours of constant pressure for the inviscid solution of
Lienhard et al.>*; the corresponding contours from the simulation are indicated by the red lines. Lienhard et al.’s interface
profile is plotted by the black and white dashed line. The lower row displays (d) streamlines along the top surface, (e) the
distribution of the Bernoulli function p + % p|u? for x = 0, and (f) radial pressure distributions along z = 0.04d and the angular

cuts shown in (d). The streamlines of (d) start at r = %d and z = %d, and are coloured according to the local speed |u]. In (e),

the red lines indicate a selection of streamlines beginning at z = %d. The black dots in (f) show Lienhard et al.’s inviscid
pressure solution and the curves are colour coded, from 6 = 0 (red) to 6 = & (blue). The red dashed lines indicate r = d, and
the vertical scale in (b,c,e) is exaggerated.
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FIG. 10: A similar set of plots to those in figure 9, but for u,,/v; = 2.

In all three cases, the radial pathways taken by the diverted
fluid from the jet extend, at most, only a little way beyond the
impact zone (r < d).

To visualize the diverted potential flow from the jet, we plot,
in the middle lower panels of Figs. 9-11, the Bernoulli func-
tion, p+ % p|u|?, over the midplane y = 0. This quantity is
largely constant for the potential flow region, but changes as
viscous redirection takes effect. For the example with low-
est wall speed, the interface develops a prominent bump up-

stream of the jet, as seen earlier in Fig. 8. This bump cor-
responds to a recirculation cell (Fig. 9(e)), which traps fluid
elements lying perfectly in the midplane; neighbouring ele-
ments to either side spiral through and then out of the cell.
The sections through the midplane y = 0 have some similarity
with the flow patterns seen for planar jets impacting a mov-
ing wall'*!3 even though the geometrical constraints of that
two-dimensional problem are very different.

Figs. 9-11 also shows the inviscid interface position and
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FIG. 11: A similar set of plots to those in figure 9, but for u,,/v; =7.
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FIG. 12: Sections through the upper interface of the lamella at x = %d, 2d, za’, 5d, 8d and 14d (from red to blue) for
simulation with (a) u,,/v; = 0.7, (b) u,,/v; =2, and (c) u,,/v; = 7; Re; = 137. The convergence of the downstream speed
(u) /uy,, averaged over the liquid phase and scaled by u,,, for all three cases is shown in (d).

pressure distribution presented by Lienhard et al.>*. In their
solution, the decay of the impact pressure for r — d implies
that the fluid diverted from the jet creates a radially outgo-
ing film of thickness & = %d there (the incoming volume flux

;{ndzv j corresponds to an outgoing flux of 2wdhv;). The lo-
cal depths near the edge of the impact zones in the numerical
simulations are somewhat deeper as a result of the underlying
return flow. Although the return flow also distorts local pres-
sures, the impact pressure distribution remains close to Lien-
hard et al.’s solution near the moving wall (panels (f)). Higher
up within the impact zone (panels (b,c)), the comparison de-
grades.

The approach to the final downstream lamella profile for
the three examples is shown in more detail in Fig. 12. The
left-hand panels display a sequence of sections through the
lamella at fixed downstream stations, x. These highlight the
perhaps surprising feature that the bulk of the final profile has
a uniform depth. The convergence of the average downstream
speed (i) (with the average taken over the liquid phase) to the
wall speed is shown in panel (d); evidently, the fluid reaches

this state well before travelling distances of order 10d.

IV. A MODEL FOR THE LAMELLA U-SHAPE

To provide a simple model of the U-shape of the lamella, we
use a relatively simple argument inspired by one proposed by
Wilson et al. for the cleaning of a soiled surface by a moving
jet’®. To begin, we first observe that the U-shape is determined
mostly outside the impact zone, where the outflow from the
jet appears much like a point source with constant flux Q =
‘—1L7rd2v ;. As discussed by Watson®, if there were no motion
of the wall, the radial velocity of this outflow would then be
approximately given by the boundary-layer form,

u(rz) =U(r)f(m), n= Gk

where h(r) is the local depth, the profile function f(n) satis-
fies the conditions, f(0) = /(1) =0 and f(1) = 1, and the
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radial velocity on the top surface is

o s
4m2f(0)(fy fdn)?

For the similarity solution used by Watson for f(n), the
constant ¢ = 0.0681; the simpler quadratic profile f(n) =
1n(2—n), often used with the von Karman-Pohlhausen inte-
gral averaging method, yields instead ¢ = 0.0456.

In our Cartesian coordinates centered at the jet, the superpo-
sition of the free-surface velocity with the uniform wall speed

is
uy,+ U cos 0
( Usin0 ) ’ 3)
where 6 is the polar angle. We now parameterize the edge of
the lamella by r = r(0). If this curve is set by the condition

that the velocity field in (3) has no normal component along
r=r(0), then

A A cp0*

U(r):ﬁv m )

2

(¥'sin@ +rcos @,rsin® — ' cos )- (MW+UCOS 9) =0.

Usin6

With the form of U (r) given by Eq. (2), we now arrive at

d oy AL
E[(rsme) = " (sin0)~. 4)

Thus, if y=rsin@ =0at 6 = 7,

A [T A
v =rsin’o = 3—/ sin” 0d. = 3—(27:—26+sin26).
Uy J6 4uy,
Q)
Consequently,
1
3(2m—26+s5in26)]3
8) =L 6
1(0) =1, | T2 20 ©
and

AN
Ly = <u) ; (7

given that [(27 — 20 +sin26)/sin’ 6] — % and r — L, for

6 — m. In view of (2), the heel lengh can be written as

L L /vi\3
gh:wRe; : <u;> , (8)

where a = 0.45 for Watson’s similarity solution and a = 0.30
for the quadratic boundary layer profile.

Finally, taking the limit 8 — 0 in Eq. (5) now furnishes the
lamella half-width,

1
3 3
szzy|90:z<2”> Ly ~3.35L,. )

Therefore, both the heel length L; and the lamella width L,,
follow the same dependence on Re;j and (u,,/v ). The U-shape
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FIG. 13: The prediction for the steady lamella U-shape in
Eqn. 6 compared with the Rankine half body, for which
r/Ly= (Tt —0)/sin6.

predicted by (6) has a somewhat similar form to the Rankine
half body (Fig. 13), even though that latter shape is prescribed
purely by potential flow. More importantly, the U-shape is
predicted to adopt a universal form after scaling by the lamella
width.

Note that the power-law dependence of L, and L; on
Reynolds number and velocity ratio follow from much simpler
scaling arguments characteristic of traditional boundary-layer
theory: when the velocity is veering towards the wall speed
within the lamella, the inertial terms in the momentum equa-
tion are O(u2,/L,,). These must balance the viscous stress,
which is of order pu,/(ph’). Buth = O(v;d?/(uyL,)) from
the global mass balance. Hence, if L, = O(L,,), we observe

that both must scale as (uw/vj)’l/3Re}-/3.

V. ANALYSIS

To interrogate the predictions of the simple model of §IV,
we collect together data extracted from our experiments and
simulations. Fig. 14 shows the (scaled) heel lengths and
lamella widths, L;,/d and L,,/d, for series of simulations and
experiments with varying Reynolds number Re; at fixed ve-
locity ratio u,,/v;. Fig. 15 shows similar data, but for series
with varying u,, /v; at fixed Re;. Experimentally, it is difficult
to control v; precisely in order to set Rej and u,, /v; for any one
series of tests, so results with velocity ratios or Reynolds num-
bers within the bounds indicated in the legends are selected. In
Fig. 14 both simulations and experiments suggest that L, and
L,, have a power-law dependence on Reynolds number with a
power that is close to % as predicted by Eqgs. (8) and (9). The
data in Fig. 15 is less suggestive of a power-law dependence
on u,,/v; with an exponent predicted by Eqgs. (8) and (9) (i.e.
- %), and point to a potentially richer dependence on velocity
ratio.

Fig. 16 presents the full set of experimental and numerical
data for heel length L and lamella width L,,. In the first two
panels of this figure, guided by §IV, we formulate the scaled
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FIG. 14: Heel lengths (top) and lamella widths (bottom) for
series of experiments (“Exp”) and simulations (“CFD”) with
varying Re; at fixed u,,/v; (as indicated). The blue line
indicates a power law of 1/3.
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FIG. 15: Heel lengths (top) and lamella widths (bottom) for
varying u,,/v; at fixed Re; (as indicated). The blue line
indicates a power law of —1/3.

lengths,
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1/3

and plot them against (Re;v;/u,)'/° to separate cases at dif-
ferent operating parameters. In the simple model, these scaled
lengths equal a constant depending upon the boundary layer
velocity profile. Specifically, the constant is 0.30 for the
quadratic profile, indicated by the blue horizontal lines in
Fig. 16, and 0.45 for Watson’s similarity solution, shown by
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FIG. 16: Scaled heel lengths and lamella widths plotted
against Re(v;/u,)'/3 for both experiments and CFD. The
horizontal lines show the values predicted by the simple
model of §IV (using either Watson’s similarity solution or the
quadratic boundary-layer profile).

the purple line. The model also predicts that the ratio L, /L,
should equal the constant value (127)'/3; we plot this ratio
against (Re;v;/u,)'/ in Fig. 16(c).

Overall, the data from both the experiments and simula-
tions are in broad agreement with the predictions of the simple
model. For lower values of (Re;v;/u,)'/3, there is a sugges-
tion in Fig. 16 of a trend away from a constant value, due per-
haps to the fact that the heel length for these cases is relatively
short. Indeed, if L, < d in Eq. (8), or [Re; - (vj/uw)]l/3 <a’l,
the heel is predicted to occur within the impact zone. The
diverted outflow cannot then appear to come from a point
source. Accordingly, taking a value for a midway between
0.30 and 0.45, we adopt the rough criterion,

Rej - (vs/un)]* <2, (10)
as an indicator for when the steady lamella has a heel that is
too small to be described by the model. This limit is indicated
by the vertical dashed line in Fig. 16, and is also displayed on
the regime diagram in Fig. 5.

Finally, Fig 17 plots the horizontal footprints of lamella,
scaled by L,,, for a collection of profiles from the experiments
and simulations. The top panel shows scaled shapes for cases
with varying Re; at fixed u,,/v;; the bottom panel has fixed
Rej and varying u,,/v;. All the shapes are collapsed by the
scaling, even though both Re; and u,,/v; vary by an order of
magnitude, and all align satisfyingly with the curve given by

Eq. (6).
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FIG. 17: Lamella shapes from experiments (“Exp”) and simulations (“CFD”) scaled by L,, and compared with the prediction
in Eq. (6), for (a) fixed u,,/v; and varying Re;, and (b) fixed Re; and variable u,,/v;. The shaded area shows the average (in
polar coordinates), plus or minus the standard deviation of six simulations.

VI. CONCLUSION

In this study, the impingement of a liquid jet on a dry mov-
ing wall has been studied using experiments and numerical
simulation. At low values of Re; and high values of u,,/v;,
the impinging liquid jet becomes immediately dragged down-
stream by viscous stresses, forming a thin liquid stripe with
a width given approximately by the jet diameter d. At high
values of jet Reynolds number or wall speed, jet impinge-
ment prompts a splash. For an intermediate range of condi-
tions, steady deposition results, with the liquid spreading into
a U-shaped lamella. Experimentally, we collected such ob-
servations together and provided an empirical regime diagram
on the (Rej,u,,/v;)-plane that identifies the steady deposition
phase.

The numerical simulations enable a deeper examination of
the structure of the lamella: high impact pressures divert the
liquid jet sideways in a nearly potential-flow adjustment. Sub-
sequently, a viscous deflection turns the fluid towards the di-
rection of motion of the wall. This viscous redirection creates
a distinctive heel upstream of the jet that returns fluid under-
neath the jet, cushioning its impact. After travelling distances
of less than ten or so jet diameters, all the fluid is eventually
brought to the wall speed. Surprisingly, the final fluid film has
almost uniform depth.

Guided by this vision of lamella dynamics, we constructed
a simple model for the shape of the lamella. This model
predicts the length of the heel, the width of the downstream
lamella, and that the entire shape adopts a characteristic uni-
versal form if scaled by one of these distances. Results from
both the experiments and the simulations are in agreement
with these predictions, except when the heel becomes rela-
tively small.

There are a number of open questions and suggestions for
future work arising from this study. The simple model for the
lamella shape is relatively crude, yet works surprisingly well.

The model does not, however, provide any insight into why
the fluid surface eventually becomes flat. These mixed suc-
cesses of the model motivate a more careful analysis. We have
also devoted little attention to the transition to splashing that
limits the deposition to one side of our regime diagram. Al-
though there have been some experimental studies of the onset
of splash for an impinging jet?®’, there is currently no robust
analytical model to provide complementary predictions. We
also did not explore the impingement dynamics for very low
velocity ratios. Here it is conceivable that the upstream heel
becomes extended, forming an elevated rim that eventually
develops into a hydraulic jump. Finally, our study applies to
Newtonian fluids, but the relatively large range of strain rates
occurring during impingemenmt, coupled with the wide range
of applications with potentially complex fluids, suggest that
an exploration of the non-Newtonian version of the problem
would be worthwhile.
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