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A theoretical and experimental study is presented of
the one-dimensional compression of a networked suspen-
sion. Particular attention is given to relatively rapid com-
pression where we extend previous works by including
an elasto-visco-plastic constitutive relation. Solutions of
a one-dimensional model are presented, and asymptotic
limits explored, for compressions controlling either dis-
placement or load. The results are compared to com-
plementary laboratory experiments using cellulose fibre
suspensions, with the material functions appearing in the
model calibrated by independent experiments. Measure-
ments of load and local solid velocity as a function of
displacement during compression and unloading gauge
the importance of elastic effects. The comparison be-
tween experiment and theory is satisfying, demonstrat-
ing a dramatic improvement over existing inelastic con-
stitutive models in reproducing the observed differential
spatial compaction.

I. INTRODUCTION

The consolidation of a saturated porous material fea-
tures in a great many problems in geophysics and engi-
neering, ranging from the compaction of soils, to indus-
trial filtration and the de-watering of suspensions. Mod-
els for these problems are often founded on two-phase
flow theory, with Darcy’s law describing the fluid flow
through the collapsing solid and the stress decomposed
by Terzaghi’s principle into the fluid pore pressure and
an effective solid stress. In the classical theory of poroe-
lasticity (e.g. [1–3]), the effective stress is assumed to
originate from the elastic response of the solid matrix.
For suspensions, this stress is more commonly assumed
to reflect plastic re-arrangements or deformations of the
interconnected solid particles [4–7]. Either way, a simple
constitutive description follows from prescribing the ef-
fective stress in terms of the local solid volume fraction,
and whether this stress has an elastic or plastic origin
becomes largely irrelevant.

Despite this classical approach, there is no special rea-
son for assuming that the effective stress is a function of
purely the solid fraction, other than one of expedience.
Indeed, the compaction of suspensions can show distinc-
tive rate-dependence and hysteresis during cycles of load-
ing and unloading [8–15], demanding a richer constitutive
description. For example, for suspensions of cellulose fi-
bres or saturated paper sheets, it is commonly assumed

that plastic rearrangements of the cellulose matrix give
rise to network strength. Nevertheless, in the de-watering
of suspensions of cellulose fibres or the swelling of pa-
per under capillary imbibition, it has been found that
the solid stress must be rate-dependent in order to rec-
oncile theoretical models with experimental observations
[15–19]. There is also much evidence from the indus-
trial processing of pulp and paper that elastic stresses
can play an important role in suspensions of cellulose fi-
bres [10, 11, 20–22]. Similar contributions from plastic,
elastic and viscous stresses feature in the deformation of
soils and thick pastes (e.g. [23]).

Such considerations motivate the current paper: we
introduce and explore a simple model for the consoli-
dation of a two-phase material, allowing for an elasto-
viscoplastic solid stress. Such an approach is not new,
with developments in plasticity theory already extended
to two-phase formulations (e.g. [1]). By building on the
framework of nonlinear elasticity, however, and in partic-
ular accommodating finite three-dimensional strains, the
constitutive description becomes somewhat daunting and
lacks transparency. For the present task, we therefore
fall back on constitutive models for single-phase complex
fluids that mix plasticity with visco-elasticity, or equiv-
alently, elasticity with visco-plasticity. More specifically,
we employ a particular model formulated by Saramito
[24] that adds a plastic yield stress to the Maxwell model
of a visco-elastic fluid (in one spatial dimension; for
higher dimensions the yield stress is added to an Oldroyd
B model). This description has the advantage of simplic-
ity and transparency: the associated material parameters
or functions can be calibrated with simple experiments
and idealized consolidation problems can be studied with
only modest effort. An important assumption is that the
chief price that must be paid by using this description
is one of quantitative accuracy, and no critical physical
effects are omitted.

With the constitutive model in hand, and incorporated
into a two-phase formulation, we explore an idealized
one-dimensional consolidation problem; the familiar “cof-
fee press” configuration. With a solid stress that depends
purely on solid fraction φ, the mathematical formulation
of this problem boils down to a nonlinear diffusion equa-
tion for φ that can be solved for compressions at either
fixed rate or prescribed load (e.g. [2, 25–29]). The im-
pact of adding to this model a rate-dependent solid stress
with the form of a simple bulk viscosity was considered
in [15]; earlier models incorporating viscoelastic consti-
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tutive laws were presented by [9, 30–33]. Our goal here
is to consider the elasto-visco-plastic version of the prob-
lem, providing a theoretical discussion complemented by
experiments with suspensions of cellulose fibres. Impor-
tantly, we proceed beyond the dynamics of compression
at constant speed or load, allowing the press to slow, stop
and even unload, all of which can potentially set the stage
for differentiating plastic deformations from elastic ones.

II. CONSTITUTIVE MODEL

A. Statement of the model

To describe the constitutive behaviour under one-
dimensional compression, we assume that solid stress
originates purely from elastic deformation provided it
does not exceed a critical stress. Once that threshold
is exceeded, the solid also deforms plastically. For a spa-
tially uniform medium, the solid effective (compressive)

stress P̂ satisfies

1

E(φ)

dP̂
dt̂

+
1

Λ̂(φ)
max

(
0,
|P̂| − P

Y
(φ)

|P̂|

)
P̂ = −ė, (1)

where the compression (strain) rate is

ė ≡ − 1

φ

dφ

dt
(2)

(− log φ being the one-dimensional logarithmic or Hencky
strain). The constitutive relation (1) incorporates a yield

condition at |P̂| = P
Y

(φ), below which the stress satisfies

the elastic law, dP̂/dt = −E ė with bulk modulus E(φ).

Above the yield condition, for |P̂| > P
Y

, deformation oc-

curs with a bulk viscosity Λ̂(φ). The compressive, plastic
yield stress is P

Y
(φ). The model in (1) has become popu-

lar in non-Newtonian fluid mechanics to describe single-
phase elasto-visco-plastic liquids, although here we take
the material parameters to all be functions of the local
solid fraction. Pictorially, the model can be character-
ized as placing an elastic spring is series with a ratchet
and dashpot paired in parallel, for each material element
in the medium; see figure 1.

When E → ∞, elastic effects disappear from (1) to

leave the viscoplastic law P̂ = −P
Y

(φ) sgn(ė) − Λ̂ė for

|P̂| > P
Y

. If, in addition, the bulk viscosity is negligible

(Λ̂ → 0), we finally arrive at the consolidation law P̂ =
−P

Y
(φ) sgn(ė) used in both soil mechanics (e.g. [2, 34])

and for colloidal suspensions (e.g. [4, 27]).
The purely elastic part of the law, applying below the

yield stress, is equivalent to the prescription,

d

dt
[P̂ − F̂ (φ)] = 0, F̂ (φ) ≡

∫ φ

φ̌−1E(φ̌)dφ̌. (3)

That is, the effective stress is a prescribed function of
the solid fraction, in the usual manner of Biot’s theory of

poro-elasticity. As commented in §I, this leads to a solid
stress model that is superficially similar to the simple
consolidation law P̂ = −P

Y
(φ) sgn(ė). However, the fac-

tor sgn(−ė) incorporates the yield-stress hysteresis into
the plastic model in place of elastic reversibility.

B. Quasi-static loading and unloading

To gain a first insight into the constitutive behaviour
captured by the model, we first consider its predictions
when compression takes place quasi-statically. In this
limit, the model displays different behaviour depending
on the relative magnitudes of the compressive yield stress
P

Y
(φ) and the elastic stress function F̂ (φ) in (3), as illus-

trated in figure 1. If P
Y
< F̂ , deformation is plastic with

the solid stress following P
Y

(figure 1a). For P
Y
> F̂ ,

on the other hand, the material deforms elastically and
P̂ = F̂ (figure 1b). The elastic-plastic behaviour seen
in figure 1(a) is familiar from the testing of soils (e.g.
[1, 2, 34]) and slurries [9]. Note that, in the illustrative
plots we have assumed that the solid matrix only estab-
lishes a network that can resist stress beyond some gel
point, φ = φg (i.e. P

Y
= F̂ = 0 for φ ≤ φg).

Because the material functions P
Y

and F̂ are solid-
fraction-dependent, if their functional forms are different,
the compressive yield stress curve can intersect the elas-
tic stress function at a special solid fraction. Assuming
that only one such intersection takes place, two further
possibilities then emerge, as illustrated in figure 1(c,d).
In these cases, the compression first follows the elastic
curve before yielding and following the compressive yield
stress (panel c), or vice versa (panel d).

Further implications of the constitutive law can be
extracted by considering the result of interrupting the
quasi-static compression by a limited cycle of unloading
and reloading. What transpires during these cycles de-
pends on whether the material has previously yielded on
not. If P̂ = F̂ when compression is interrupted, the ma-
terial elastically recovers and recompresses along the F̂
curve during the cycle, as in figure 1(b) where the plas-
tic yield stress is always too large to play any role in
the mechanics of the material. If, however, P̂ = P

Y
,

the material immediately becomes unyielded at the mo-
ment that unloading begins and deforms elastically until
the cycle ends. The stress during the cycle cannot fol-
low the original F̂ curve, however, because an amount of
unrecoverable plastic strain has occurred along the com-
pressive yield stress curve. Instead, as indicated by the
integral of (3), the relevant stress pathway is a trans-

lated curve, P̂ = F̂ + constant, that intersects the P
Y

curve at the point where unloading begins (see figure

1(a,c)). Note, however, that in regions where P̂ = P
Y

but ∂P
Y
/∂φ > ∂F̂/∂φ, as in the lower shaded region in

figure 1(d), the material cannot recover along the elastic
curve, because in doing so it would be raised above the
yield stress; in this case, the elastic stresses must instead
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FIG. 1. Sketches showing the constitution of each material element in our model elasto-visco-plastic medium (left), and the
four simplest types of quasi-static compression dynamics (right; a-d). On the right, the light blue shading indicates when

the material has yielded, the black (solid or dashed) lines show PY (φ) and the red (solid or dashed) lines indicates F̂ (φ).

Quasi-static compression follows either PY (φ) or F̂ (φ) depending on their relative magnitudes; the sections of these curves
that are followed are drawn by solid lines (and are dashed otherwise). The grey shaded rectangles illustrate the response when
compression is interrupted by a cycle of limited unloading and reloading. If this response is elastic, but begins from a point on
the compressive yield stress curve, the unloading-reloading follows a translated elastic curve F̂ (φ) + constant indicated by the
red dotted lines.

drive plastic deformation and the response follows the P
Y

curve as shown in the figure.
As implied by the comparisons with experimental ob-

servations reported next, we will be most concerned with
a medium with the behaviour shown in figure 1(a); i.e. a

medium with P
Y
< F̂ , for which unloadings depart from

the compressive stress curve along steeper elastic con-
tours under quasi-static conditions. This type of solid
matrix may well describe a suspension in which the con-
stituent particles can move relative to one another to
consolidate, whist resisted by frictional forces stemming
from somewhat larger normal forces due to Hertzian con-
tact or elastic bending and collapse.

C. Experimental support

The predictions of the constitutive model for quasi-
static loadings interrupted by limited cycles of unloading
and reloading reproduces observations taken from exper-
iments with suspensions of hydrogel or cellulose fibres.
The first of these experiments consisted of a relatively
crude apparatus in which a 20cm deep settled suspen-
sion of hydrogel spheres of radius 9mm was compressed
in a box by a plunger. The box had a 16cm×16cm square
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FIG. 2. Compression curves interrupted by limited unloading-
reloading cycles for a hydrogel suspension. The short red lines
indicate local fits to each unloading-reloading section. The
insets show the original piston position versus load data, and
the values for E(φ) extracted from the loading-reloading fits.
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FIG. 3. Compression curves interrupted by limited unloading-
reloading cycles for a suspension of cellulose fibres. Two tests
are shown, conducted at compression rates of 1µm/s; in the
first test, the unloading rate is the same, but in the second it is
increased to 10µm/s. The red line shows the pure compression
test calibrating PY (φ). The inset shows a detail of one of the
cycles, together with the fit giving E(φ).

cross-section; the plunger was slightly smaller, enabling
water to freely pass around the sides whilst trapping the
spheres underneath. The plunger was fixed to a milling
table and its position adjusted in a series of steps with a
screw. The load after each step was measured by plac-
ing a scale underneath the box. The depth of the hy-
drogel layer was measured by taking photographs from
the side and processing the images. In the second experi-
ment, the specially designed compression device reported
in [15, 18] was used with suspensions of cellulose fibres.
In this case, the plunger position is remotely controlled,
following a pre-set compression sequence; more details
of the cellulose fibre experiments appear below in §VI.
Figures 2 and 3 show sample results for tests in which
cycles of limited unloading and reloading interrupted a
net compression.

For comparison, figure 4(a) shows a complementary
numerical solution of the model (1), with constitutive
functions and parameters chosen as indicated in the cap-
tion. We ignore any gel point, and set φg = 0. Note
that the model at this stage contains no differential com-
paction in space due to dynamic de-watering (which is
introduced in the next section), allowing us to solve (1)
directly for a spatially uniform material with no further
dynamical considerations. The structure of the inter-
rupted compression curves is similar to that observed ex-
perimentally (for the sequence of main compression and
limited unloading-reloading cycles adopted). The finer
structure of the compression curves over the unloading-
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FIG. 4. Compression curves interrupted by limited unloading-
reloading cycles for the model (1) with (E , Λ̂, PY ) =

(E∗, η∗, p∗)φ2. In (a), scaled stress P = P̂/p∗ (blue curve) is
plotted for ε/γ ≡ η∗U/(h0p∗) = 10 and ε/(γλ) ≡ E∗/p∗ = 4,
where U/h0 is the compression rate (see §III C) The black
dashed and dotted lines display ΠY = PY /p∗ and the trans-

lated F = F̂ /p∗ curves. For (b), we show solutions in which
the compression rate is increased so that ε/γ ≡ η∗U/(h0p∗) =

10(j−2)/2 with j = 0, 1, ..., 4 (from blue to red). The insets
show details of one of the cycles (with the different solutions
offset horizontally in (b) for clarity).

reloading cycles is a little different, however, with the ob-
servations suggesting that a loop can open up during the
cycle. The theoretical compression curves, in contrast, do
not show loops (figure 4a). These curves become merely

shifted off the P
Y

and F̂ lines when the compression is
performed faster and we move away from the quasi-static
limit; see figure 4(b) which presents further solutions to
(1) with higher strain rates. This suggests that the loops
in the experimental curves are not due to a finite com-
pression rate. Indeed, conducting the test shown in figure
3 a second time, but with a faster unloading rate, leads
to no obvious systematic change in the structure of the
loops arising during the unloading-reloading cycles (see
the inset to figure 3).

Note also that these interrupted compression curves
can be employed to calibrate the functions P

Y
(φ) and

F̂ (φ) (or E(φ)). In particular, the main loading se-
quence provides the compressive yield stress, whereas
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the interruptions furnish the local elastic bulk modu-
lus at the initiation of unloading (the local slope here

is ∂F̂ /∂φ = φ−1E(φ)), as illustrated in figure 2 and the
inset to figure 3.

III. DYNAMIC DE-WATERING MODEL

A. Mathematical formulation

FIG. 5. A sketch of the two-phase model geometry.

Moving on to the dynamics of compression, we now
consider a one-dimensional, two-phase medium in which
fluid flows through a solid matrix that collapses under
the action of a load σ̂(t̂) imposed by a permeable piston.
Each phase is incompressible, with constant solid and
fluid densities. As sketched in figure 5, we denote position
and time by ẑ and t̂. The piston, which retains all the

solid beneath, has position ẑ = ĥ(t̂), and there is an
impermeable base at ẑ = 0. The differential compaction
of the solid is described by the local volume fraction,
φ(ẑ, t̂) and solid velocity u(ẑ, t̂); initially, the solid matrix
is uniform and motionless with φ(ẑ, 0) = φ0. The velocity
of the fluid is v̂(ẑ, t̂).

Replacing the ordinary time derivatives with material
derivatives following the local solid motion (cf. [28, 34]),
the constitutive law becomes

1

E
DP̂
Dt̂

+
1

Λ̂
max

(
0,
|P̂| − P

Y

|P̂|

)
P̂ =

1

φ

Dφ

Dt̂
, (4)

where

D

Dt̂
≡ ∂

∂t̂
+ û

∂

∂ẑ
. (5)

We embed this relation in a two-phase formulation by
adopting Terzaghi’s principle and assuming that inertia

and gravity are negligible. Conservation of mass, Darcy’s
law and force balance then demand that

∂φ

∂t̂
+

∂

∂ẑ
(φû) = 0 (6)

−∂φ
∂t̂

+
∂

∂ẑ
[(1− φ) v̂] = 0 (7)

(1− φ)(v̂ − û) = −k(φ)

µ

∂p̂

∂ẑ
(8)

∂

∂ẑ

(
p̂+ P̂

)
= 0 (9)

where k(φ) and p̂ are the permeability and fluid pore
pressure, respectively.

At the impermeable base ẑ = 0, we impose û(0, t̂) =
v̂(0, t̂) = 0. A combination of (6) and (7) yields the bulk
continuity equation, which integrates to

φû+ (1− φ)v̂ = 0,

demanding that the fluid velocity is v̂ = −φû/(1 − φ).
The Darcy flux is therefore (1 − φ)(v̂ − û) = −û, which
can be introduced into Darcy’s law to remove the fluid
velocity from (6), (8) and (9) and render (7) redundant.

At z = ĥ(t̂), we demand

û(ĥ, t̂) =
dĥ

dt̂
, p̂(ĥ, t̂) = 0, P̂(ĥ, t̂) = σ̂(t̂), (10)

neglecting any flow resistance through the piston and ig-
noring air pressure.

The choice of the material derivative in (5) deserves
some comment, as the effective stress may not be con-
vected with the solid velocity. Indeed Preziosi et al. [32]
employ the mass-average velocity,

um =
φρsû+ (1− φ)ρf v̂

φρs + (1− φ)ρf
≡ φ(ρs − ρf )û

φρs + (1− φ)ρf
,

to convect P̂ in their formulation for a viscoelastic effec-
tive stress, where ρs and ρf denote the fluid and solid
densities. For the current problem, this choice would
allow no convection if there was no density difference be-
tween the two phases. Moreover, in order that the model
recover the elastic limit described in §III D, the material
derivative in (5) must match that implied by (6). For
these reasons, and in the interest of retaining a simple
model formulation, we therefore persist with (5). An
alternative would be to replace û by c(φ)û in this deriva-
tive, at the expense of the burden of a further material
function c(φ) (given that v̂ = −φû(1 − φ)−1, which im-
plies that all linear combinations of the velocities of the
two phases take this form).

B. Material functions

To close the system of equations, material functions are
needed to set the dependence of the permeability k(φ) on
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the solid fraction and dictate the coefficients of the con-
stitutive law. For the permeability law, when exploring
the dynamics captured by the model, we adopt the simple
power law,

k(φ) = k∗φ
−a, (11)

where a is a parameter and k∗ represents a characteris-
tic permeability scale. Later, when comparing theoret-
ical results with experiments using a particular porous
medium (a suspension of cellulose fibres), we employ a
more complicated, but experimentally calibrated, perme-
ability function.

The elasto-visco-plastic law requires three more mate-
rial functions: for these, we take for illustration,

P
Y

(φ) = p∗φ
n, E(φ) = E∗φm & Λ̂ = η∗φ

2, (12)

where (p∗, E∗, η∗) are again characteristic scales and n
and m are parameters. Again, we will later employ richer
forms for P

Y
(φ) and E(φ) guided by calibration experi-

ments for cellulose suspensions. The bulk viscosity is
more difficult to constrain empirically; in the interest of
simplicity, and in view of previous successes for pulp, we
continue with the power-law form for Λ̂(φ) in (12).

C. Dimensionless model equations

We remove dimensions from the model equations using
the scalings,

(ẑ, ĥ) = h0(z, h), û = Uu, t̂ =
h0
U
t and P̂ = p∗P,

(13)
where h0 represents the initial height of the suspension,
and U is the initial compression speed. Then,

Dφ

Dt
= −φ∂u

∂z
, (14)

u = −γK(φ)
∂P
∂z

, (15)

λΛ(φ)

E(φ)

DP
Dt

= − ε
γ

Λ(φ)
∂u

∂z
−max

(
0,
|P| −Π

Y
(φ)

|P|

)
P,

(16)

where

γ =
p∗k∗
µh0U

, ε =
k∗η∗
µh20

& λ =
η∗U

h0E∗
(17)

denote dimensionless groups dictating the rapidity of de-
watering and the relative strengths of bulk viscosity and
a Weissenberg number measuring the importance of elas-
ticity. The dimensionless versions of the material consti-
tutive functions are

K =
k

k∗
, Π

Y
=
P

Y

p∗
, E =

E
E∗

& Λ =
Λ̂

η∗
. (18)

The initial and boundary conditions are

φ(z, 0) = φ0, P(0, t) = Π
Y

(φ0), (19)

u(h, t) = ḣ(t), P(h, t) = Rσ(t), (20)

where σ(t) = σ̂/pp is the stress on the piston scaled by
a characteristic load pp, R = pp/p∗ is the ratio of that
load to the characteristic compressive stress scale, and we
assume that the material has been deformed plastically
(by, for example, slow stirring) to arrange it into its initial
state.

Two versions of the compaction problem posed above
are possible. In an analogue of the familiar “coffee press”,
one can control the position of the piston; h(t) is then
an input variable and the load σ(t), together with the
solid distribution φ(z, t), is an output. Alternatively, for
fixed load, one controls σ(t) and the piston position and
φ(z, t) are output. The scalings above contain both a
characteristic piston speed U and a characteristic piston
load pp; depending on which version of the problem is
being studied one of these is known and the other must
be suitably chosen, as outlined at the start of §IV below.

D. Plastic and unyielded limits

If either λ = ε = 0 or |P| < Π
Y

for all time, we recover
the nonlinear diffusion equation,

φt = [D(φ)φz]z (21)

where

D(φ) = γφK(φ)×
{

Π′
Y

(φ), λ = ε = 0
F ′(φ), |P| < Π

Y
,

(22)

(assuming that Dφ/Dt > 0, or P > 0, for ε = λ = 0),

F (Φ) = ε(γλ)−1
∫
φ−1E(φ)dφ (23)

is the dimensionless version of the elastic stress function
F̂ (φ), and the prime indicates differentiation with respect
to φ. The nonlinear diffusion equation (21) corresponds
to that used in previous work for purely plastic or elastic
solid stresses.

More generally, where the material is unyielded, the
model indicates that

D

Dt
[P − F (φ)] = 0, (24)

Hence, the solid stress is known only up to that left be-
hind by the unrecoverable plastic strain arising prior to
the yield point: P = P0(z0, t0) + F (φ), where (z0, t0)
denote the position and time where the local mate-
rial element reached the yield stress and P0(z0, t0) ≡
Π

Y
(φ(z0, t0)). In general, this embeds a history depen-

dence into the solid stress that precludes any reduction
to (21).
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FIG. 6. Interrupted compression curves for differential compaction with ε = 10−2, γλ/ε = 0.316, a = 3, n = m = 2 and the
values of γ indicated. (a) shows the prescribed piston position h(t), along with a density plot of log10 φ for γ = 0.1; red contours
indicate the yield surfaces where P = ΠY (φ). Two compression curves are shown in (b) (offset from one another); the black
dotted lines show the corresponding quasi-static solution. Details of the loops arising during one unloading-reloading cycle are
shown in (c), with γ ranging from 0.1 (red) to 10 (blue), offset from the low-γ (red) loop for clarity.

IV. INVESTIGATING THE MODEL

To study the dynamical de-watering behaviour cap-
tured by the model, we first present solutions for some
idealized fixed-rate and fixed-load compression problems.
We use the idealized power-law material functions of
§III B, choosing n = m, and initialize with φ0 = 0.05.
With fixed-rate compression, the characteristic speed U
is specified but the typical piston load pp is not, permit-
ting us to set pp = p∗ and R = 1; the parameter γ can
then be thought of as gauging the rapidity of de-watering.
For the fixed-load problem, on the other hand, the char-
acteristic piston load pp is prescribed, rendering R as a
controlling load parameter, whereas U is not specified
but can be chosen to set γ = 1. In either case, the re-
maining parameters from the constitutive law are ε and
λ, measuring the importance of the bulk viscosity and
elasticity, respectively.

A. Fixed-rate compression

We begin by reconsidering the interrupted compres-
sion sequences of §II B and II C. With a finite layer,
the descent of the permeable piston can differentially
compact the solid to raise the load at the top above
the compressive yield stress expected from the mean
solid fraction φ(t). In the absence of elastic effects and

bulk viscosity, the solid compacts uniformly when the
rate of de-watering is low (the parameter γ is large),
as in §II B and II C. But with more rapid de-watering
(γ � 1), the solid builds up significantly against the pis-
ton whilst remaining at the initial fraction over the bulk
of the layer beneath (e.g. [27]). Significant bulk viscosity
(ε = O(1) or larger) mostly prevents the development of
such boundary-layer structure by assisting the diffusive
spreading of the solid distribution (as shown by [15] and
explored more fully including elasticity in §V below).

In figure 6, we show an interrupted compression se-
quence for a material with both elasticity and bulk vis-
cosity. In particular, we choose ε = 10−2 and γλ/ε ≡
p∗/E∗ = 0.316, which leads to modest viscous and elastic
effects and compression behaviour like that illustrated in
figure 1(a). By fixing both ε and γλ/ε, but then varying
γ, the theoretical problem corresponds to an experiment
in which a given material is compressed at different rates.
Solutions for varying de-watering rates (i.e. γ) are dis-
played in the figure using the interrupted compression se-
quence prompted by the motion of the piston indicated
in panel (a). At the lowest de-watering rate (γ = 10),
the layer remains spatially uniform and the compression
curve matches up with Π

Y
(φ) during the main compres-

sion sequence, and the translated elastic stress curves
F (φ) + constant over the unloading-reloading cycles (see
panel (b)).
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FIG. 7. Differential compaction for ε = γ = 10−2, a = 3, n = m = 2 using a constant piston speed up to t = 1
2
. Shown

are density plots of velocity u(z, t) and solid fraction φ(z, t) for (a) λ = 0.01 and (b) λ = 0.316. The red lines are the yield
surfaces, and the black dashed lines show the contours u = 2j × 10−3 for j = 1, ..., 4 to illustrate finer details not visible on this
colour scale. Below, we plot time series of (c) the mean, top and bottom solid fractions, and (d) piston load, for solutions with

λ = 10(j−6)/2 for j = 0, ..., 5 (from blue to red).

FIG. 8. A similar plot to figure 7, but with a parabolic piston motion for t < 1.
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For higher de-watering rates (γ = 0.1), the layer dif-
ferentially compacts and the main compression curve
shifts above Π

Y
(φ) (cf. [15]). Moreover, the unloading-

reloading cycles develop into loops. As the extent of
these loops depends on the rate of de-watering (panel
(c)), however, this feature cannot correspond to that ob-
served in the relatively slow experiments of §II C. Despite
the differential compaction arising during the faster com-
pressions, the layer largely plugs up once each unloading
begins, and then yields once more after the reloadings
have completed (see the yield surfaces plotted in panel
(a)).

More differential compactions are shown in figures 7
and 8. In these two examples, fixed-rate compression
occurs until the layer depth has halved, at which point
the piston halts and the solid is left to relax under any
remaining elastic stresses. By design, the constitutive
model should capture both the phase of dynamic com-
pression and the subsequent elastic recoil. In figure 7, the
piston speed is constant until it stops abruptly at t = 1

2

so that h = max(1 − t, 12 ); the second example shows
a parabolic piston motion with compression trailing off
more smoothly up to t = 1: h = 1− t+ 1

2 t
2 for t ≤ 1, and

h = 1
2 for t > 1. Solutions for various values of λ are pre-

sented, with ε = γ = 10−2 and n = m = 2. Such choices
correspond to compression tests with certain fixed rates,
conducted on materials with different degrees of elastic-
ity (i.e. λ). To ensure that the F (φ) ≡ ε(γλ)−1φ2 curve
remains above ΠY (φ) ≡ φ2, we demand λ < 1.

Without elasticity (λ → 0), some differential com-
paction arises, as illustrated by the solutions with λ =
0.01, for which elastic effects are minor. Once the pis-
ton halts, the layer quickly plugs up, with a yield surface
descending from the piston. As elastic effects become
more significant (larger λ), the degree of differential com-
paction during the compression phase increases; see pan-
els (b) and (c) of the two figures. However, once the pis-
ton stops, the stored elastic stresses subsequently relax,
decompressing the compacted boundary layer and even-
tually leaving a more uniform state than that reached
without elasticity (panel c). The final elastic relaxation
becomes protracted for the higher values of λ, unlike the
viscoplastic layer which stops in its relaxed state instan-
taneously. The dashed contours of relatively small solid
velocity included in panels (a) and (b) of the two fig-
ures highlight the residual motion that accompanies this
relaxation (some of which is purely elastic once P falls
below Π

Y
).

With an abrupt halt to piston motion (figure 7), there
is a sudden switch from compression under the piston to
the elastic recovery. For an almost viscoplastic material,
this switch is accompanied by a sharp fall in load as the
viscous contribution to the solid stress is suddenly re-
moved. Elasticity counters this drop in stress somewhat,
although the load still falls sharply. When the piston
slows more gradually (figure 8), the viscous stress on the
piston declines much less precipitously and any elastic
recovery begins whilst the piston is still moving down.

The sharp switch from compression to recovery is there-
fore avoided by bringing the piston to a smooth halt.

The enhancement of differential compaction by elas-
ticity (increasing λ) is particularly noticeable with larger
bulk viscosities (i.e. ε). In the viscoplastic model for
ε = O(1), differential compaction is compensated by vis-
cous spreading, with the solid remaining uniform even
under relatively rapid compression (γ � 1) [15]. With
sufficient elasticity, however, a compacted boundary layer
can nevertheless appear underneath the piston as it de-
scends, although most of this structure disappears un-
der a protracted elastic recoil once the piston stops.
These features are illustrated in figure 9(a), which plots
the top and bottom solid fractions for solutions with
(γ, ε) = (10−2, 1) and different λ (i.e. the same γ but
a larger ε than in figures 7 and 8). Without elasticity
(the lower λ, blue curves), little differential compaction
arises, with the solid fraction at the bottom closely track-
ing that at the top. By contrast, a sharp boundary layer
develops as λ in increased. The boundary layer of the
solution with λ = 25 is shown in more detail in figure
8(b,c), and compared to analytical results derived from
the boundary-layer theory outlined in §V. As illustrated
by the final panel of this figure, the boundary layer forms
for such parameters settings because the solid stress is
dominated by elasticity, with P approaching the trans-
lated elastic stress function, F = ε(φm−φm0 )/(mλγ)+φn0 .
Consequently, the problem becomes governed by the non-
linear diffusion equation in (21), with a relatively small
diffusivity D, setting the stage for the appearance of a
boundary layer.

B. Fixed loading

Figure 10 shows a suite of solutions to the fixed-load
compression problem. In these solutions, at t = 0 the top
load is suddenly increased from P(h, t < 0) = Π

Y
(φ0)

up to P(h, t > 0) = R = 25Π
Y

(φ0) (i.e. σ(t > 0) =
1), prompting differential compaction. Figure 10(a-c)
presents solutions holding p∗/E∗ ≡ ε−1λ = 1

4 fixed and
varying ε; solutions with ε = 0.01 and varying λ are pre-
sented in figure 10(d). Because γ is scaled to 1 in this
problem (see the pre-amble to §IV) and ε ∝ h−20 , the
former (panels a-c) corresponds to a fixed-load problem
with, for example, a given material but varying initial
depth. The latter (panel d) corresponds to a particular
loading problem for materials with differing elastic mod-
uli.

The sudden loading causes the piston to descend
abruptly and a compacted boundary layer develops un-
derneath. This is illustrated in figure 10(a,c,d), which
plots time series of h(t) and the top and bottom solid
fractions for the two series of solutions, and figure 10(b),
which shows the structure of the boundary layers for
the problem with fixed λ/ε. In the latter panel, the
boundary-layer profiles of φ(z, t) are again compared with
the predictions of the theory in §V.
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FIG. 9. Parabolic compression solutions with ε = 1, γ = 0.01 and a = n = m = 2. Time series of the bottom and top solid
fractions, φ(0, t) and φ(h, t), are plotted in (a) for λ = 0.01, 0.1, 1, 4, 12.5 and 25 (blue to red). Also shown are the mean
solid fraction φ(t) (dashed) and the prediction in (36) (red dots). For the solution with λ = 25, we present (b) density plots
of u(z, t) and φ(z, t), and the profiles of (c) φ(z, t) and (d) P(z, t) at the times indicated by the dotted lines in (b). The (red)
dots in (c) show the prediction from (33), based on the value of φT from the numerical solution, and the (red) dashed lines in
(d) show the translated elastic stress function F = ε(φm − φm

0 )/(mλγ) + φn
0 .

The time series of solid fraction (panels (c) and (d))
display distinctive features reflecting the degree to which
elasticity impacts the loading problem: except at the low-
est values for λ, the boundary layer becomes dominated
initially by the elastic stress, with the top solid fraction
adjusting to the value φ

E
for which the load is balanced

by the elastic stress function:

F (φ
E

)− F (φ0) + Π
Y

(φ0) = R, (25)

or, given the specific parameters used here,

ελ−1(φ2
E
− φ20) = 24. (26)

For the smallest values of λ, however, the elastic stress
does not limit the compaction in the boundary layer,
which instead becomes controlled by the compressive
yield stress. The top solid fraction then approaches the
value set by Π

Y
(φ∞) = R, or φ∞ = 5φ0. These two

features are illustrated in figure 10(c,d), where the red-
der curves of φ(h, t), with higher λ or ε, first level off at
φ

E
, whereas the blue curves, with lower λ and ε, progress

with little interruption up to φ∞.
Somewhat later, the piston slows down, prompting

elastic effects to decrease relative to plastic ones (cf. V).
If, at this stage, the solid still remains compacted against

the piston (so that φ(0, t) remains at φ0), the bound-
ary layer accordingly adjusts its structure from that con-
trolled by elasticity to that imposed by the yield stress
(see the purple solutions for φ(h, t) with intermediate val-
ues for ε and λ in figure 10(c), and the redder curves for
larger λ in figure 10(d)). Somewhat later, the boundary
layer reaches the bottom, φ(0, t) catches up to φ(h, t),
and a spatially uniform final state is approached with
φ = φ∞ and h = h∞ ≡ φ0/φ∞ = 1

5 , for the specific case
considered here.

For the highest values of λ and ε (the red curves in
figure 10(a-c)), the boundary layer reaches the bottom
before compressive yield stresses take hold. A different
spatially uniform state then emerges with φ ≈ φ

E
and

h = h
E

= φ0/φE
. Eventually the stress again relaxes,

however, and the layer approaches the same final state
as for smaller ε. That equilibrium, with φ = φ∞, is de-
manded regardless of the parameters settings (provided
F > Π

Y
) because the load always raises the stress above

Π
Y

(φ) and the solid is unable to fall back below that
yield stress during compaction. The final approach to
steady state is therefore always controlled by the plastic
stress, and the corresponding nonlinear diffusion equa-
tion in (21). This is unlike the fixed-rate problem, for
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FIG. 10. Fixed-load compression (γ = 1) with a = n = m = 2 and R = 25ΠY (φ0). In (a-c), ε−1λ = 1
4

and ε = 10j for j = −4,
−3, ..., 2 (blue to red). Shown are (a) h(t), (b) spatial profiles of φ(z, t) when h ≈ 0.69, and (c) φT (t) = φ(h, t) and φ(0, t).
The horizontal lines in (a) and (c) show (φE , hE) (dotted) and (h∞, φ∞) (dot-dashed); the corresponding curves show (37) for
the elastic and plastic limits. Also shown in (b) (shifted to the right for clarity) are predictions from (33), based on the values
of φT from the numerical solutions. Panel (d) shows a similar plot to (c), but for solutions with ε = 0.01 and 4ε−1λ = 1, 1

3
,

10−1, 10−2 and 10−3 (from red to blue). The inset shows h(t).

which the layer begins to unload when the piston halts,
allowing the stress to fall below Π

Y
which freezes into

place the differentially compacted solid distribution.

V. BOUNDARY-LAYER THEORY

A useful exercise in understanding the dynamics cap-
tured by the model and interpreting the impact of pa-
rameter variations is to consider the limit in which the
descent of the piston generates a narrow compacted layer
just underneath. Such boundary layers were considered
in [15] for the plastic problem. For the current model, we
first transform into a frame moving with the piston by
setting ζ = h− z; in this frame, spatial derivatives must
be large and the mass conservation equation becomes

[(u− ḣ)φ]ζ ≈ φt. (27)

In principle, we should neglect the right-hand side of this
equation in comparison to the left-hand side, and then
integrate to find that (u − ḣ)φ is some function of time

alone. However, u = ḣ at ζ = 0, but (φ, u)→ (φ0, 0) be-
low the boundary layer, which offer conflicting choices for
the constant. In particular, because ζ = 0 is contained
within the boundary layer the first condition is poten-

tially the more natural, but this implies u ∼ ḣ through-
out the finely structured region and is inconsistent with
the stationary layer underneath. The issue is connected
to how, after a finite time, an O(φ0) amount of solid is
compressed into the relatively thin boundary layer, and
so the solid fraction there is necessarily much greater than
φ0 by a factor of order δ−1, where δ measures the thick-
ness of the boundary layer.

To resolve this conflict, we avoid neglecting the right-
hand side of (27), and instead evaluate it perturbatively.
More specifically, the quasi-static boundary-layer struc-
ture is expected to take the form,

S(φ) = S(φT ) + ζ, φT (t) = φ(0, t), (28)

for some function S(φ). For the perfectly plastic or elas-
tic problems, satisfying (21), we have explicitly S(φ) ≡∫
φ−1D(φ)dφ. This functional form implies that

φt = φ̇TS
′(φT )φζ &

∫ ζ

0

φtdζ = −φ̇TS′(φT )(φT − φ).

(29)
But mass conservation demands (since φ → φ0 for ζ →
h(t)),

0 =
d

dt

∫ h

0

φ(ζ, t)dζ =

∫ h

0

φtdζ + ḣφ0. (30)
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Hence

u = ḣ+ φ−1
∫ ζ

0

φtdζ ≈
ḣφT (φ− φ0)

φ(φT − φ0)
, (31)

which now satifies both of the originally conflicting con-
ditions, and reduces to u ∼ ḣ if (φ, φT )� φ0.

Next, since P = Π
Y

(φ) or P = F (φ)−F (φ0)+Π
Y

(φ0)
in the plastic or elastic boundary layers, we set

DP
Dt
∼ Pζ
φζ

Dφ

Dt
∼ ḣ2φ0φ

2
T (φ− φ0)

γKφ2(φT − φ0)2
. (32)

Assuming P > Π
Y

, we may now differentiate the consti-
tutive law and rearrange the resulting expression into

Kφ0

{
Λ

φ2

[
εφζ −

λḣφT (φ− φ0)

EK(φT − φ0)

]}
ζ

∼ 1− φ0
φ
− (φT − φ0)

ḣφT
γKΠ

Y

′φζ . (33)

Omitting the left-hand side furnishes a boundary-layer
theory for the perfectly plastic problem; neglecting the
right-hand side gives the elastic version. In all cases, we
must solve (33) subject to φ(0, t) = φT and φ(h, t) =
φ0, and then feed the result into the mass conserva-

tion constraint
∫ h
0
φdζ = φ0. For fixed piston posi-

tion, h(t), this procedure determines φT (t). For fixed
load, on the other hand, the top boundary condition
demands P = RΠ

Y
(φ0) with either P ∼ Π

Y
(φT ) or

P ∼ F (φT ) − F (φ0) + Π
Y

(φ0), both of which fix the
solid fraction at the top. The mass conservation con-
straint then corresponds to a differential equation for the
piston position because ḣ appears explicitly in (33).

Away from the plastic and elastic limits, (33) offers a
means of deciphering the controlling factors for the solid
distribution and determining the boundary-layer thick-
ness δ. For the viscoplastic model, the action of the bulk
viscosity in delocalizing the boundary layer is evidenced
by the first term. The second, elastic contribution is sim-
ilar to that from the compressive yield stress (final term
on right-hand side), although its opposite sign is indica-
tive that larger λ solutions should show a sharpening of
the boundary layer relative to the viscoplastic theory,
as observed numerically. Moreover, the different depen-
dence of these terms on the instantaneous compression
rate ḣ emphasizes how elasticity is promoted at faster
rates and plasticity for lower rates.

The prediction of (33) for the solid distribution ap-
pears along with the numerical computations in figures 9
and 10, adopting the instantaneous value of φT computed
numerically. The solution in figure 9 is, in fact, con-
trolled largely by elastic stresses, as is illustrated by the
final panel of that figure which demonstrates that P(z, t)
remains close to the (translated) elastic stress function
F = ε(φm−φm0 )/(mλγ) +φn0 during the compression. In
this situation, the main balance in (33) is between the
first two terms, leading to a chacteristic boundary layer

scale of δ ∼ εEK/(λ|ḣ|). For the solution in figure 9, this
scale is δ ∼ [25(1− t)]−1 which roughly matches the half-
width of the boundary-layer profiles displayed in panel
(c).

For the perfectly plastic limit (ε = λ = 0, omitting the
left-hand side of (33)), we obtain

ḣφT (φ− φ0) = (φT − φ0)Dφζ , (34)

with D = γφKΠ
Y

′ (indicating that the characteristic

boundary layer thickness is now δ ∼ γKΠ
Y

′/|ḣ|). An
integral of (34) over the layer gives

−ḣφTφ0(1− h) = (φT − φ0)

∫ φT

φ0

D(φ)dφ. (35)

For the perfectly elastic limit (neglecting the right-hand
side of (33)), we recover exactly the same result, but
with D ≡ ελ−1EK, as in (22). Note that, if φKΠ

Y

′ =
constant or EK = 1 (i.e. a = n or a = m), then the
diffusivity D is constant in either limit (and equal n or
ε/λ), and so

φT = φ0

[
1 + 1

2T +
√
T
(
1 + 1

4T
)]
, (36)

for fixed rate with T = −D−1ḣ(1− h), or

h = 1− (φT − φ0)

√
2Dt

φTφ0
, (37)

for fixed load.

A key limitation in these results is the condition
φ(h, t) = φ0, which fails when the boundary layer reaches
the bottom. Equation (33) also cannot capture any final

elastic recoil: in this setting ḣ = 0 and we must omit
the right-hand side in view of the yield condition, leav-
ing only φζζ = 0 (and implying that the time derivatives
have not been dealt with adequately). Both limitations
are visible in figure 9(b), which includes the prediction in
(36): as time advances, the boundary layer thickens and
the adjustments in solid fraction reach the base, both of
which cause the prediction to diverge from the numeri-
cal solution with time. Moreover, for t > 1, the piston
stops with the boundary-layer theory predicting that φT
returns to φ0 (the theory effectively assumes that the
medium has infinite depth, and so the predicted solid
fraction at the top is allowed to fall below φ = h−1).
The latter issue also plagues the predictions for the fixed
load problems shown in figure 10, which compares the nu-
merically computed h(t) with the result from (37), taking
D = ελ−1 (panel (a)) or D = 2 (panel (a) and the inset
to (d)).
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FIG. 11. Fitted constitutive functions for the pulp suspension, showing (a) PY (φ) and E(φ), and (b) permeability. The symbols
show the actual experimental measurements; the solid red lines are the fits. The dashed red line in (a) shows the fit for PY

multiplied by a factor of twenty. The lighter blue symbols denote results obtained from the low-load tests reported by [18].

VI. RAPID DE-WATERING OF CELLULOSE
SUSPENSIONS

A. Experimental Description and materials

The experimental apparatus is a filtration device that
uses a MTS 858 tabletop material tester operated re-
motely by a control unit. The MTS pushes a permeable
piston into a cylinder of radius 6.7cm holding the sus-
pension. The cylinder is positioned on top of a load cell
that measures σ̂(t̂). The piston fits closely into the cylin-
der, and a friction force between the piston seals and
the walls of 6500Pa is subtracted from the load mea-
surements during fixed-rate compressions. The unit is
capable of providing compression loads of 1.0−1.2MPa.

The ĥ(t̂) compression profile chosen for the dewatering
experiments is parabolic, which has the benefit of gradu-
ally stopping the piston whilst starting with a relatively
high speed. With a LABVIEW interface, we specify ini-
tial suspension height h0, end height h0hend, and the ini-
tial compression rate U = −ḣ0, so that the dimensionless

height of the piston h = ĥ/h0 is given by

h =

{
1− t+ t2/[4(1− hend)], t ≤ 2(1− hend),
hend, 2(1− hend) < t,

(38)

written in terms of the same dimensionless time t =
(U/h0)t̂ as in (13). This imposed height profile thus
has the same form as that considered theoretically in fig-
ure 8. For the dewatering tests, we set h0 = 41.4cm and
h0hend = 5.6cm, leaving the initial compression rate as
the main parameter. The interface was also used to cali-
brate the network’s elastic response, by performing slow
compressions interrupted by unloading-reloading cycles
(see §II C). The cycles were performed by unloading the
suspension to 66% of the load at which the piston reversal
started, fixing the piston speed at ±1µm/s.

The cellulose suspension is composed of a northern
bleached softwood Kraft wood pulp, consisting of a mix-

ture of Scots Pine and Norway Spruce [35]. The sus-
pensions are made from dried pulp sheets, and prepared
to an initial concentration of φ0 ≈ 0.025 for the dewa-
tering tests. Calibrations of the compressive yield stress
and permeability were undertaken in [19], resulting in the
fits,

PY (φ) = 6.20× 105φ1.87(1− φ)−3.83 Pa (39)

and

k(φ) = 2.67× 10−13φ−1 lnφ−1e−20.38φm2, (40)

as shown in figure 11. The bulk viscosity scaling was also
fitted to be η∗ = 2.89 × 107 Pa [19], based on tests con-
ducted at lower compression rates than those we report
below. The unloading-reloading cycles conducted here
further provided the bulk modulus E(φ), also included
in figure 11(a). The closed squares are measured by the
MTS; the open circles were determined by an additional
low-load experimental apparatus using the same protocol
(slow compaction, and partial unloading) [18]. The fit to
the combined data is

E(φ) = 1.08× 108φ2.71(1− φ)−0.688 Pa. (41)

Although the fitted forms for PY (39) and E (41) look
quite different, the actual functional forms are remark-
ably similar, but for a constant factor of about 20, as
can be seen in figure 11. This similarity suggests a com-
mon physical origin for the plastic and elastic compo-
nents of the stress in this suspension, such as might arise
if the friction incurred by plastic re-arrangements was
controlled by the elastic normal forces arising from the
bending or collapse of fibre walls (cf. [19]).

Below, we present the experimental results for dy-
namic dewatering. When we compare these observa-
tions with theory, and employ dimensionless variables,
we use a nominal solid fraction φ∗ = 0.1 in order to se-
lect the characteristic scales p∗ = P

Y
(φ∗), E∗ = E(φ∗)
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FIG. 12. Compressions for cellulose fibres performed at varying initial velocities (U = 5, 15, ..., 55 mm/s) with the same initial
and final heights. Panel (a) shows experimental results. Each test is conducted four times; the points show the average and
the error bars band a standard deviation. Panel (b) shows the corresponding results for the theoretical model with (solid)
and without (dotted) elasticity. The vertical dashed line indicates when the piston stops, and the black line shows the load
assuming that compression arises quasi-statically along the PY −curve.

and k∗ = k(φ∗). In terms of the dimensionless groups
defined in §III that then emerge, we note that the exper-
iments are conducted with parameters ε = 13.5,

4× 10−3 ≤ γ = 0.049(U/U∗)
−1 ≤ 0.049,

15.4 ≤ λ = 15.4(U/U∗) ≤ 185,

where U∗ = 5mm/s. Thus, without elasticity, we expect
dewatering to be relatively rapid (γ � 1) but the bulk
viscosity to significantly smooth the solid distribution (ε
is large). However, elasticity is also likely to be important
(λ� 1).

B. Dynamic de-watering

Experimental compression curves were collected for a
variety of initial piston velocities U . Sample results are
presented in figure 12. This figure plots recorded load
against time, both dimensionless. As the initial compres-
sion rate U increases, the load rises more steeply, then
falls as the piston slows down. Visual observations of the
suspension in the cup indicate that the steepening rise
of the load is associated with enhanced differential com-
paction, with pulp packing into a boundary layer under
the permeable piston, as observed in other studies [36–
38]. Eventually, the boundary layer stops packing as the
piston decelerates and the load drops, much as in the
theoretical solutions presented in §III.

Figure 12 also reports matched theoretical results,
both with and without elasticity. For the lowest com-
pression rates there is only a minor difference between
the two versions of the model, with the elastic theory
performing slightly better in reproducing the experiment.
This reflects the conclusions of [15, 19], who found that

the inclusion of a bulk viscosity alone was effective in
allowing the model to reproduce experimental dewater-
ing behaviours at these compression rates. Indeed, if
neither elasticity nor a viscous solid stress are included
(λ = ε = 0) and P = Π

Y
(φ), the model predicts that the

solid immediately packs to unphysically high concentra-
tions underneath the piston, generating excessive loads,
at the compression speeds used in Figure 12 (cf. [15, 19]).

For faster compressions, the elastic version of the
model noticeably outperforms the viscoplastic model in
reproducing both the shape and magnitude of the load
curves in Figure 12. In particular, the viscoplastic model
predicts that the load rises abruptly at the earliest times,
but then climbs more slowly; the smoother initial rise in
σ̂(t) for the elastic solutions, followed by an elevated load
for 0.1 < t < 1.1, more closely matches the experimental
results.

The final relaxation of the stress is also poorly repro-
duced by the model without elasticity: with λ → 0, the
model load abruptly stabilizies at its final value when
the piston stops. The experiments display a more grad-
ual trend, however, more like the elastic relaxation of the
model with finite λ. That said, the theoretical results
with the calibrated values for the material functions dis-
play a more pronounced final relaxation than the exper-
iments, and the agreement between the two sets of load
curves is only qualitative.

C. Particle tracking

Although the elastic-viscoplastic model performs bet-
ter than the viscoplastic version of the model in repro-
ducing load curves, the improvement is not dramatic,
leading one to wonder whether the addition of elastic-
ity is truly key. However, for the relatively significant
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FIG. 13. Solid velocities, u(z, t) = û/U , as densities on the (t, z)−plane for U = 1.5, 10, 30 and and 55mm/s (from left to
right). For each column, particle tracking measurements are shown on the top, the predictions of the elasto-viscoplastic theory
in the middle, and those of the viscoplastic model on the bottom. The vertical dashed lines show where the piston stopped, and
the red contours in the theoretical plots show the yield surfaces. The PTV data include the velocities computed for the piston,
which adds to the spatial converage in cases where tracers were not located nearby and can therefore ? any sharp gradients
there.

values of the bulk viscosity found for the pulp suspen-
sion (for which ε = O(1)), the purely viscoplastic model
is expected to predict that little differential compaction
should arise during compression (see §IV A). But pro-
vided elastic effects are sufficiently strong, a boundary
layer can build underneath the piston as it descends.
This is, indeed, what is observed experimentally, with
the suspension deforming far from uniformly in space.

To pursue this detail further, we performed parti-
cle tracking on the solid during the compression tests.
The tracking tests were performed using a smaller
range of compression and initial solid fraction, with
(h0, h0hend) ≈ (5.4, 2)cm and φ0 ≈ 0.02, to ease the
identification of the tracer particles. Sample results are
shown in figure 13, which plots the observed solid veloc-
ities as densities over the (t, z)−plane. Also displayed
are the predictions of the elasto-viscoplastic and purely
viscoplastic models. At relatively low compression rate
(left-hand column), the two versions of the model are
largely in agreement and predict similar solid velocities
to those observed (which again concides with the find-
ings of [15, 19]). The only noteworthy discrepancy is
that the visco-plastic model predicts a sudden onset of
motion throughout the solid (a feature connected with
the abrupt initial rise of the load seen in figure 12 for
the dotted curves). Instead, with elasticity, a signal de-
scends through the layer, activating motion. The particle
tracking data supports the latter behaviour, although the
measurements are not especially definitive.

As the dewatering speed U is increased (progressing
from left to right in figure 13), this discrepancy be-
comes more obvious, with the solid velocity becoming
strongly confined to a layer underneath the piston for

both the particle tracking measurements and the elastic
model. This feature reflects the build up of a compacted
boundary layer, as found in our general theoretical explo-
ration of the model when the bulk solid viscosity is either
small (ε � 1) or if elasticity is important (λ = O(1) or
larger); see §IV. For the parameter settings expected
for the experiments, the bulk viscosity is relatively large
(ε = O(10)). As a result, the solid distribution in the
purely viscoplastic model is excessively smoothed by the
bulk solid viscosity, and no boundary layer emerges if
λ → 0. Instead, the solid velocity extends down to the
base of the layer immediately from the beginning of the
piston’s descent, and the space-time plot of u looks sim-
ilar for all the different compression speeds (see the bot-
tom row of panels in figure 13). By contrast, the particle
tracking measurements reveal definitively that the dif-
ferential solid motion is dependent on piston speed and
becomes confined to a boundary layer for higher com-
pression rates, in agreement with the elasto-viscoplastic
model (top and middle rows in figure 13).

VII. DISCUSSION

In this paper we have explored a model for the com-
paction of a two-phase medium in which the solid is al-
lowed to deform elasto-viscoplastically. The model bor-
rows a constitutive law for the solid stress from theory of
single-phase complex fluids, and couples that with tradi-
tional formulations for two-phase media. Previous mod-
els for the compression of soils or colloidal suspensions
often prescribe the solid stress as a material function
of the local solid concentration, which in the two-phase
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formulation leads to similar mathematical formulations,
with the elastic or plastic origin of the stress becoming
secondary. By contrast, our current model distinguishes
between purely elastic or plastic deformation, and accom-
modates a solid viscous response that has proved previ-
ously to be effective in model comparisons with exper-
iments for certain media. The model also permits one
to examine the dynamics of a medium that is first com-
pressed and then unloaded, which naturally differentiates
elastic recovery from the hysteresis originating from plas-
tic deformation.

To interrogate the theoretical model, we considered
one-dimensional compression and unloading with either
fixed rate or fixed load. In such problems, boundary
layers of compacted solid can appear against the per-
meable walls when compression is relatively fast. We
provided further analysis of such situations, construct-
ing some asymptotic solutions or reductions of the model
equations that can be used to further dissect the problem.

We then confronted the model with the reality of an
experiment conducted using a suspension of cellulose fi-
bres. Earlier experimental investigations with such ma-
terials had shown the need for a solid viscous-like stress
to explain the compaction dynamics. The tests that we
conducted here used faster rates of compression, and also
considered unloading, both aimed at promoting or iden-
tifying elastic effects. The experiments were in qualita-
tive agreement with the theoretical model, once certain
material functions (the dependence of the permeability,
compressive stress, elastic bulk modulus and viscosity)
were calibrated. In particular, using particle tracking of
tracers in the solid, we were able to demonstrate that the
elasto-viscoplastic model was capable of reproducing the
differential spatial compaction, as well as the net load
exerted on the piston performing the compression.

Despite this qualitative agreement, there are quanti-
tative discrepancies between the model and experiment.
In view of the relative crudeness of the model, which was
posed in the interest of simplicity, this is perhaps not

so surprising. One obvious possible origin of the lack
of quantitative agreement is the bulk viscosity function
that we adopted, Λ̂ = η∗φ

2. Unlike our other material
functions, the dependence of this quantity on solid frac-
tion has not been directly measured. Instead, the func-
tional form was assumed, and the fitting parameter η∗
determined by comparing model solutions for dynamic
dewatering with experiments. Part of the discrepancy
between theory and experiment could therefore originate
from a failure to calibrate correctly the φ−dependence of
the rate-dependent part of the solid stress. A better ap-
proach would be to perform additional time-dependent
tests to calibrate this function properly, as is typically
done in rheometry of complex fluids.

A more serious issue is the failure to explain the loops
that appear in quasi-static compression curves that are
interrupted by cycles of unloading and reloading. Mea-
surements for cellulose fibre suspensions (§II C; [18])
demonstrate that the cycle creates a stress-strain loop
that appears to be independent of rate, much as for other
materials (cf. [8, 14, 39–42]). Only with differential spa-
tial compaction do loops appear for the model, and even
then, they are rate-dependent. The same issue has been
encountered in soil mechanics, where attempts have been
made to account for the loop by introducing limitations
on elastic strains at the granular level [43–46]. However,
these modifications are made to constitutive descriptions
that are rather more complicated than that considered
here, and it is not clear how such ideas could be incorpo-
rated into the present model.
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