1. Linear homogeneous systems of differential equations

See Appendix A. Review of Differential Calculus. Let \(J \subset \mathbb{R} \) be an open interval and let \(A(t) \) be a continuous real \(n \times n \) matrix of coefficient functions for \(t \in J \). Then the linear homogeneous system of ODEs
\[
\dot{x} = A(t)x, \quad x \in \mathbb{R}^n
\]
always has \(n \) linearly independent real solutions on \(J \) (for more background, see almost any undergraduate ODE textbook). Arranging these solutions as the columns of a real \(n \times n \) matrix, we get a fundamental matrix \(\Psi(t) \). A fundamental matrix satisfies
\[
\dot{\Psi} = A(t)\Psi, \quad \det(\Psi(t)) \neq 0 \text{ for all } t \in J.
\]
In terms of a fundamental matrix, the unique solution of the initial value problem
\[
\dot{x} = A(t)x, \quad x(t_0) = x_0,
\]
where \(t_0 \in J \), can be written as
\[
x(t) = \Psi(t)\Psi(t_0)^{-1}x_0.
\]
Thus, it is always possible to find the fundamental matrix \(\Phi(t) = \Phi(t; t_0) \) satisfying \(\Phi(t_0; t_0) = I_n \), where \(I_n \) denotes the \(n \times n \) identity matrix.

2. Linear vector fields (autonomous linear homogeneous systems of differential equations)

If \(A \) is a constant real \(n \times n \) matrix, then the linear homogeneous system (with constant coefficients)
\[
\dot{x} = Ax, \quad x \in \mathbb{R}^n
\]
is called autonomous (the system is also called a linear vector field in this case) and the fundamental matrix \(\Phi(t; 0) \) for the system that satisfies \(\Phi(0; 0) = I_n \) is the exponential matrix (or linear flow or linear evolution operator)
\[
\Phi(t; 0) = e^{At}.
\]
See Appendix B. Some Linear Algebra. It is possible to find the linear flow \(e^{At} \) explicitly, by finding a basis of generalized eigenvectors of \(A \) and determining the linear nonsingular coordinate changes that take the matrix \(A \) into its Jordan normal form (which is a nonreal complex matrix if \(A \) has any nonreal complex eigenvalues) or its real normal form (which is a real matrix).

3. Stable, centre and unstable subspaces, hyperbolicity, asymptotic behaviour

Definitions: (dynamically) invariant set, positively invariant, negatively invariant, locally invariant.

If \(A \) is a constant real \(n \times n \) matrix, then qualitative properties of the linear flow \(e^{At} \), generated by the linear vector field
\[
\dot{x} = Ax
\]
are determined by the real parts \(\text{Re } \lambda_j \) of the eigenvalues \(\lambda_j \) of the matrix of coefficients \(A \). The stable subspace \(T^s \), the centre subspace \(T^c \), the unstable subspace \(T^u \), and the direct sum decomposition
\[
\mathbb{R}^n = T^s \oplus T^c \oplus T^u
\]
for A give much of the qualitative information we are usually interested in, such as stability. All three subspaces T^s, T^c, T^u are invariant.

An invariant set Λ is (a) Liapunov stable if for any open set U containing Λ, there exists an open set V containing Λ such that $x(0) \in V$ implies $x(t) \in U$ for all $t \in [0, +\infty)$; (b) asymptotically stable if it is Lyapunov stable and there exists an open set W containing Λ such that $x(0) \in W$ implies $x(t) \to \Lambda$ as $t \to +\infty$; (c) unstable if it is not Lyapunov stable.

The set consisting of an equilibrium is invariant. If $T^c = \{0\}$ then the linear vector field is hyperbolic (and, since zero is not an eigenvalue, the equilibrium $x_0 = 0$ is unique). If $T^c = \{0\}$ and $T^u = \{0\}$ then the equilibrium 0 is asymptotically stable. If $T^u \neq \{0\}$ then the equilibrium 0 is unstable.

4. Linear maps (autonomous linear homogeneous systems of difference equations)

A constant real $n \times n$ matrix B gives a linear map

$$x \mapsto Bx, \quad x \in \mathbb{R}^n$$

(often, Bx, or B, is called the linear map if the context is understood) which is a linear diffeomorphism if $\det B \neq 0$. The integer powers B^k of B, $k \in \mathbb{Z}$, give a (discrete-time) linear evolution operator. The map, or the corresponding evolution operator, can be considered as an example of a discrete-time dynamical system. Qualitative properties of this dynamical system are determined by the moduli (absolute values) $|\mu_j|$ of the multipliers (eigenvalues) μ_j of B. The stable subspace T^s, the centre subspace T^c, the unstable subspace T^u, and the direct sum decomposition

$$\mathbb{R}^n = T^s \oplus T^c \oplus T^u$$

for B give most of the information we are usually interested in (but the definitions of the stable, centre and unstable subspaces are different than for linear vector fields). If $T^c = \{0\}$ then the linear diffeomorphism is hyperbolic. If $T^c = \{0\}$ and $T^u = \{0\}$ then the fixed point $x = 0$ is asymptotically stable. If $T^u \neq \{0\}$ then the fixed point 0 is unstable.

5. Floquet theory (periodic nonautonomous linear homogeneous systems of differential equations)

If $A(t)$ is a continuous periodic real $n \times n$ matrix with period $T_0 > 0$,

$$A(t + T_0) = A(t) \quad \text{for all } t \in \mathbb{R},$$

then to determine the qualitative properties of the linear homogeneous system

$$\dot{x} = A(t)x$$

one chooses some $t_0 \in \mathbb{R}$, finds the fundamental matrix $\Phi(t, t_0)$ that satisfies $\Phi(t_0; t_0) = I_n$, and forms the monodromy matrix at t_0

$$M = \Phi(t_0 + T_0; t_0).$$

The eigenvalues μ_j of the monodromy matrix M do not depend on which initial time t_0 is used, and these eigenvalues are called the Floquet multipliers of the system. These determine the qualitative properties of the system. A Floquet exponent is a number λ_j such that $e^{\lambda_j} = \mu_j$.

If $A(t)$ is not constant, it can be difficult to find the fundamental matrix $\Phi(t, t_0)$ explicitly. However if $A(t)$ depends continuously on a parameter, then so do the Floquet multipliers. This fact can sometimes be used to determine qualitative properties of the system, by perturbation arguments.