1. Suppose \(f : \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n \) is \(C^p \), with \(p \geq 1 \). By the Fundamental Theorem of Calculus, the solution \(x(t) = \varphi(t, t_0, x_0, \alpha), t \in \mathcal{J}(t_0, x_0, \alpha) \), of the initial value problem

\[
\dot{x} = f(t, x, \alpha), \quad x(t_0) = x_0,
\]

satisfies the equivalent integral equation

\[
\varphi(t, t_0, x_0, \alpha) = x_0 + \int_{t_0}^{t} f(s, \varphi(s, t_0, x_0, \alpha), \alpha) \, ds. \tag{1}
\]

By Theorem 2.1, \(\varphi(t, t_0, x_0, \alpha) \) is differentiable with respect to the initial value \(x_0 \) and also with respect to the parameter \(\alpha \). By differentiating (1) with respect to \(x_0 \) or \(\alpha \), and then with respect to \(t \) (assuming that one may interchange the orders of differentiation and integration), one can derive some useful facts about the derivatives (matrices) \(\varphi_{x_0} \) and \(\varphi_{\alpha} \).

(a) Let \(\Phi(t) = \varphi_{x_0}(t, t_0, x_0, \alpha) \), and determine the initial value problem satisfied by the \(n \times n \) matrix \(\Phi(t) \) (the derivative of the solution with respect to the initial value).

(b) Let \(\Theta(t) = \varphi_{\alpha}(t, t_0, x_0, \alpha) \), and determine the initial value problem satisfied by the \(n \times m \) matrix \(\Theta(t) \) (the derivative of the solution with respect to the parameter).

2. Suppose \(f : \mathbb{R}^n \to \mathbb{R}^n \) is \(C^p \), \(p \geq 1 \). Let \(x(t) = \varphi(t, t_0, x_0) \) be the unique solution of the initial value problem for the autonomous system

\[
\dot{x} = f(x), \quad x(t_0) = x_0,
\]

starting at initial value \(x_0 \) at arbitrary initial time \(t_0 \), with \(\varphi(t, t_0, x_0) \) defined for \(t \) belonging to the maximal open interval of existence \(\mathcal{J}(t_0, x_0) \).

(a) Let \(y(t) = \varphi(t, 0, x_0), t \in \mathcal{J}(0, x_0) \), be the unique solution of

\[
\dot{y} = f(y), \quad y(0) = x_0,
\]

starting at the same initial value \(x_0 \) but at initial time 0. Let \(z(t) = y(t - t_0) \), and show that \(x(t) = z(t) \), i.e. \(\varphi(t, t_0, x_0) = \varphi(t - t_0, 0, x_0) \), and \(\mathcal{J}(t_0, x_0) = t_0 + \mathcal{J}(0, x_0) \). So for an autonomous system, without loss of generality in the initial value problem we may assume that the initial time is \(t_0 = 0 \).

(b) Prove that \(\varphi(t + s, 0, x_0) = \varphi(t, 0, \varphi(s, 0, x_0)) \), i.e. \(\varphi^{t+s}(x_0) = \varphi^t \circ \varphi^s(x_0) \), for all \(t, s \in \mathbb{R}, x_0 \in \mathbb{R}^n \) such that both sides are defined.

3. Consider the initial value problem for the one-parameter family of autonomous vector fields in \(\mathbb{R}^1 \), with \(\alpha \in \mathbb{R}^1 \),

\[
\dot{x} = \alpha x - x^2, \quad x(0) = x_0 \in \mathbb{R}^1. \tag{2}
\]

(a) Sketch phase portraits in the state space (i.e. the \(x \)-axis) \(\mathbb{R}^1 \), for each of the three cases \(\alpha < 0, \alpha = 0, \alpha > 0 \). Note that you do not have to “solve” the initial value problems explicitly, in order to sketch the phase portraits.
4. Let \(\alpha \) be a constant.

(b) Sketch the phase portrait, in the \(\alpha x \)-plane, of the autonomous vector field in \(\mathbb{R}^2 \),

\[
\dot{\alpha} = 0, \quad \dot{x} = \alpha x - x^2.
\]

Use a horizontal \(\alpha \)-axis and a vertical \(x \)-axis.

(c) In a separate sketch, draw curves in the \(\alpha x \)-plane showing the locations of all equilibria \(x^0 = x^0(\alpha) \). Use a solid curve to denote a “branch” of (asymptotically) stable equilibria, and a dashed curve to denote a branch of unstable equilibria.

(d) For \(\alpha = 0 \) only:

i. by elementary methods, find explicitly the solution of the initial value problem (2) i.e. the local flow \(\varphi^t(x_0) = \varphi(t, 0, x_0, 0) \) including its maximal open interval of existence \(\mathcal{J}(0, x_0, 0) \) (you may need to consider different cases of \(x_0 \) separately);

ii. find explicit numerical values of \(t, s, \) and \(x_0 \) such that only one of \(\varphi^{t+s}(x_0) = \varphi(t+s, 0, x_0, 0) \) or \(\varphi^{s} \circ \varphi^{s}(x_0) = \varphi(t, 0, \varphi(s, 0, x_0, 0), 0) \) is defined, but the other is not.

4. Let \((x_1, x_2)\) denote rectangular coordinates in the plane \(\mathbb{R}^2 \), and consider the vector field

\[
\dot{x}_1 = x_1 - x_2 + x_1^2 - x_1x_2, \quad \dot{x}_2 = x_1 + x_2 + x_1x_2 - x_1^2x_2 - x_2^3. \tag{3}
\]

(a) Observe that the origin \((0, 0)\) is an equilibrium. Determine the linearized stability of this equilibrium.

(b) Complexify the vector field (3) by letting \((x_1, x_2) \in \mathbb{C}^2\). In \(\mathbb{C}^2 \), make the change of coordinates

\[
\begin{align*}
z_1 &= x_1 + ix_2, & z_2 &= x_1 - ix_2,
\end{align*}
\]

and write the vector field (3) transformed into the coordinates \((z_1, z_2)\) (use the chain rule, etc.).

(c) Now “realify” the vector field in part (b) by restricting it to the invariant subspace \(\{(z_1, z_2) \in \mathbb{C}^2 : z_2 = \bar{z}_1, \} \), where \(\bar{z}_1 \) is the complex conjugate of \(z_1 \). Polar coordinates in the plane \(r \in \mathbb{R}_+ = (0, \infty), \theta \in \mathbb{S}^1 \) may be expressed as \(z_1 = re^{i\theta}, z_2 = \bar{z}_1 = re^{-i\theta} \) or \(r^2 = z_1\bar{z}_2 = z_1\bar{z}_1, 2i\theta = \log z_1 - \log z_2 = \log z_1 - \log \bar{z}_1 \). Write the vector field (3) transformed into polar coordinates \((r, \theta) \in \mathbb{R}_+ \times \mathbb{S}^1\).

(d) Show that there are two circles \(r = a \) and \(r = b \), with \(0 < a < b \), such that \(\dot{r} > 0 \) on \(r = a \) and \(\dot{r} < 0 \) on \(r = b \). Thus the compact (closed and bounded) annular region \(\mathcal{A} = \{(x_1, x_2) \in \mathbb{R}^2 : a^2 \leq x_1^2 + x_2^2 \leq b^2 \} \) is positively invariant (or “trapping”) and it contains no equilibria.

(e) Let \(\Sigma \) be the positive \(x_1 \)-axis

\[\Sigma = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 > 0 \text{ and } x_2 = 0\} \]

Show that \(\Sigma \) is a cross-section to the vector field (3), and also carefully show that any initial value on \(\Sigma \) gives a solution to the initial value problem that always returns to \(\Sigma \) after a positive finite time. Thus for this vector field, the domain of the Poincaré map \(P \) is all of \(\Sigma \), \(P \) is a “global” Poincaré map.

(f) Carefully show that \(P(a) > a \) and \(P(b) < b \), where \(a \) and \(b \) are as in part (d). Use the Intermediate Value Theorem for continuous functions in \(\mathbb{R} \) (look it up in a calculus textbook or online, apply it correctly) to show that the Poincaré map \(P \) has at least one fixed point in \(\Sigma \), and therefore the vector field (3) has at least one periodic orbit in \(\mathbb{R}^2 \). (If you know the Poincaré-Bendixson Theorem, it can be applied to give the same conclusion.)