Bijections

Let X and Y be sets, and let $U \subseteq X$ be a subset. A (single-valued) map or function $f : X \to Y$ takes each element $x \in U$ to a unique element $f(x) \in Y$. We write

$$y = f(x), \quad \text{or} \quad x \mapsto f(x).$$

The domain (of definition) of f is U, and the range or image of f is the subset $f(U)$ of Y given by

$$f(U) = \{ y \in Y : \text{there exists } x \in U \text{ such that } y = f(x) \}.$$

A map $f : X \to Y$ is one-to-one or is invertible or is an injection if for all $x_1, x_2 \in U$, $f(x_1) = f(x_2)$ implies $x_1 = x_2$ (equivalently, $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$). If f is one-to-one, then there is an inverse map or inverse function $f^{-1} : Y \to X$ whose domain is $f(U)$ (notice that f^{-1} is single-valued).

A map $f : X \to Y$ is onto (or is a surjection) if $f(U) = Y$.

A map $f : X \to Y$ is a (global) bijection (or one-to-one correspondence) if $U = X$ and f is one-to-one and onto. If f is a bijection, then its inverse map $f^{-1} : Y \to X$ is defined on all of Y.

Homeomorphisms

Let X and Y be topological spaces. Examples of topological spaces are: i) \mathbb{R}^n; ii) a metric space; iii) a smooth manifold (see below); iv) an open subset of a topological space. A map $f : X \to Y$ is a (global) homeomorphism if it is a (global) bijection, and both f and its inverse map f^{-1} are continuous maps.

Two topological spaces are equivalent (as topological spaces) if there is a homeomorphism from one topological space onto the other.

If $U \subseteq X$ and $V \subseteq Y$ are open subsets, and $f : U \to V$ is a homeomorphism, then we call f a local homeomorphism from X into Y. In this case, for brevity we usually write $f : X \to Y$ even when f is actually a local homeomorphism $f : U \to V$ from X into Y, and we call it a homeomorphism even if its domain U is not all of X or its range V is not all of Y.

Manifolds, tangent spaces

We only consider manifolds that are smooth. The definition of a smooth manifold given here is sufficient for this course, but there are other, more general definitions.

Let $F : \mathbb{R}^n \to \mathbb{R}^m$ be differentiable, with $m < n$. Then the subset of \mathbb{R}^n given by

$$X = \{ x \in \mathbb{R}^n : F(x) = 0 \}$$

(the solution set of m equations in n unknowns) is a smooth (or differentiable) manifold in \mathbb{R}^n if the $m \times n$ derivative (matrix) $F_x(x)$ has rank m, the maximum possible, at each point $x \in X$. In this case the dimension of X is $d = n - m$. If the map F is C^p, then we say X is a C^p manifold.

Examples of smooth manifolds are: i) \mathbb{R}^n; ii) an open subset $U \subseteq \mathbb{R}^n$; iii) the graph $\{(x,y) : y = V(x)\}$ of a smooth function $V : \mathbb{R}^n \to \mathbb{R}^m$ defined on an open subset $U \subseteq \mathbb{R}^n$ (as an exercise, show that this satisfies the above definition for a manifold in \mathbb{R}^{n+m} of dimension n); iii) the (1-dimensional) unit circle
$S^1 = \mathbb{R}^1/(2\pi\mathbb{Z}) = \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 - 1 = 0\}; iv) \text{ the (2-dimensional) cylinder } S^1 \times \mathbb{R}^1; v) \text{ the } 2\text{-dimensional torus or 2-torus } T^2 = S^1 \times S^1; vi) \text{ an open subset of a manifold.}

A one-dimensional smooth manifold in \mathbb{R}^2 or \mathbb{R}^3 is a smooth curve, a two-dimensional smooth manifold in \mathbb{R}^3 is a smooth surface.

If X is a smooth manifold in \mathbb{R}^n and $x \in X$, then the tangent space to X at x is the vector space $T_x X$ in \mathbb{R}^n of all velocity vectors $v = \dot{\gamma}(0)$ for smooth curves $\gamma : \mathbb{R} \to X$ that lie in X with $\gamma(0) = x$ (v is the velocity vector pointing in the direction $\dot{\gamma}(0)$ from the point $x \in X$; think of it as a vector whose “tail” is at the point x). Alternatively, $T_x X$ is the vector space which is the orthogonal complement of $\{\nabla F_1(x), \cdots, \nabla F_m(x)\}$, where F_j is the jth component of F, i.e.

$$T_x X = \{\nabla F_1(x), \cdots, \nabla F_m(x)\}^\perp.$$

The dimension of the tangent space $T_x X$ at x is equal to the dimension of the smooth manifold X (for any $x \in X$).

Diffeomorphisms

Let X and Y be smooth manifolds. A map $f : X \to Y$ is a (global) diffeomorphism if it is a (global) homeomorphism, and both f and its inverse map f^{-1} are differentiable (this implies that the manifolds X and Y must have the same dimension). The map f is a C^p diffeomorphism ($p \geq 1$) if X and Y are both C^p manifolds, and both f and f^{-1} are C^p maps.

If $U \subseteq X$ and $V \subseteq Y$ are open subsets of smooth manifolds, and $f : U \to V$ is a (C^p) diffeomorphism, then call f a local (C^p) diffeomorphism from X into Y. As for homeomorphisms, we usually write $f : X \to Y$ even when f is actually a local diffeomorphism $f : U \to V$ from X into Y and we call it a diffeomorphism, even if its domain U is not all of X or its range V is not all of Y. (If we really mean $f : X \to Y$ with domain X and range Y, sometimes, for emphasis, we say f is a global diffeomorphism.)

Exercise. Show that $f : \mathbb{R}^1 \to \mathbb{R}^1, f(x) = x^3$, is a global homeomorphism, but not a global diffeomorphism.