1. The Euclidean Norm

If \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \), then its \textit{Euclidean norm} is \(\|x\| = \sqrt{\sum_{j=1}^{n} x_j^2} \).

2. The Derivative

\textit{“Big oh” and “little oh” notation:} If \(f : \mathbb{R}^n \to \mathbb{R}^m \) and \(g : \mathbb{R}^n \to \mathbb{R}^m \) are two functions defined for all \(x \) belonging to an open neighbourhood of the point \(x_0 \in \mathbb{R}^n \), and if \(\lim_{x \to x_0} g(x) = 0 \), then we say that
\[
f(x) = o(g(x)) \text{ as } x \to x_0
\]
(“\(f \) is little oh of \(g \)”) if \(\lim_{x \to x_0} \frac{\|f(x)\|}{\|g(x)\|} = 0 \) (if “\(f \) goes to zero faster than \(g \) does”). For example, for \(n = 1 \) and \(m = 1 \) we have
\[
e^x - 1 - x = o(|x|) \text{ as } x \to 0.
\]

Similarly, we say that
\[
f(x) = O(g(x)) \text{ as } x \to x_0
\]
(“\(f \) is big oh of \(g \)”) if there is a constant \(C \geq 0 \) such that \(\|f(x)\| \leq C\|g(x)\| \) for all \(x \) sufficiently close to \(x_0 \) (if “\(f \) goes to zero at least as fast as \(g \) does”). For example,
\[
e^x - 1 - x = O(|x|^2) \text{ as } x \to 0.
\]

If \(f : \mathbb{R}^n \to \mathbb{R}^m \) is a continuous function (or map), then the \textit{derivative}, or \textit{Jacobian matrix}, of \(f \) is the \(m \times n \) matrix
\[
f_x(x) = \left(\frac{\partial f_i(x)}{\partial x_j} \right),
\]
where \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, n \), provided all these partial derivatives exist.

For example, if \(f : \mathbb{R}^3 \to \mathbb{R}^2 \) is given by
\[
f(x) = \begin{pmatrix} x_1x_2x_3 - 1 \\ x_1^2 - x_3 \end{pmatrix},
\]
then its derivative is the \(2 \times 3 \) Jacobian matrix of partial derivatives
\[
f_x(x) = \begin{pmatrix} x_2x_3 & x_1x_3 & x_1x_2 \\ 2x_1^2 & 0 & -1 \end{pmatrix}
\]
and its derivative at the point \(x_0 = (1, 1, 1) \) is the constant \(2 \times 3 \) Jacobian matrix
\[
f_x(x_0) = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & -1 \end{pmatrix}
\]

In general, if all first order partial derivatives of all components of \(f \) exist at the point \(x = x_0 \), then it can be proved that the derivative of \(f \) at \(x_0 \) is the unique matrix \(f_x(x_0) \) that satisfies
\[
f(x_0 + h) = f(x_0) + f_x(x_0)h + R(h)
\]
for all \(h \in \mathbb{R}^n \) near 0, where \(R(h) = o(||h||) \) as \(h \to 0 \). This property is sometimes taken as the definition of \(f_x(x_0) \).
If \(k \geq 1 \) is an integer, we say the function \(f \) is \(C^k \) if all partial derivatives of all components of \(f \), up to and including order \(k \), exist and are continuous. If \(f \) is \(C^2 \) in an open neighbourhood of \(x = x_0 \), then it can be proven that
\[
f(x_0 + h) = f(x_0) + f_x(x_0)h + R(h)
\]
for all \(h \in \mathbb{R}^n \) near 0, where \(R(h) = O(\|h\|^2) \) as \(h \to 0 \). This gives us a little more information than \(R(h) = o(\|h\|) \) as \(h \to 0 \).

3. The Chain Rule

If \(g : \mathbb{R}^n \to \mathbb{R}^m \) and \(f : \mathbb{R}^m \to \mathbb{R}^k \) are two functions, their composition \(f \circ g : \mathbb{R}^n \to \mathbb{R}^k \) is defined by
\[
f \circ g (x) = f(g(x)),
\]
or
\[
f \circ g (x) = f(u), \quad \text{where} \quad u = g(x).
\]
By the Chain Rule (Theorem), under suitable conditions we have
\[
(f \circ g)_x(x) = f_u(g(x)) g_x(x),
\]
where the right hand side is the matrix product of the \(k \times m \) matrix of partial derivatives of \(f \), evaluated at \(g(x) \), with the \(m \times n \) matrix of partial derivatives of \(g \), evaluated at \(x \).

4. The Inverse Function Theorem

Consider a function \(f : \mathbb{R}^n \to \mathbb{R}^n \), \(y = f(x) \), and we ask whether we can solve uniquely for \(x \) in terms of \(y \), as \(x = g(y) \), i.e. whether \(g = f^{-1} \) exists as a well-defined function.

Theorem A.1. Suppose \(f : \mathbb{R}^n \to \mathbb{R}^n \) is a \(C^k \) function, \(k \geq 1 \), in an open neighbourhood of \(x_0 \), and let \(y_0 = f(x_0) \). If the \(n \times n \) matrix \(f_x(x_0) \) is nonsingular, then there exists a unique, locally defined \(C^k \) function \(g : \mathbb{R}^n \to \mathbb{R}^n \), \(x = g(y) \) defined in an open neighbourhood of \(y_0 \), such that
\[
g(f(x)) = x
\]
for all \(x \) belonging to some open neighbourhood of \(x_0 \) in \(\mathbb{R}^n \).

The unique (locally defined) function \(g \) in this theorem is called the inverse function for \(f \) (near \(y_0 \)) and is denoted by \(g = f^{-1} \). Recall that if \(f \) is not 1-to-1, then \(g = f^{-1} \) in general depends on \(x_0 \). For example, when \(n = 1 \) consider the inverse function for \(f(x) = x^2 \) near \(x_0 = 1 \), \(y_0 = 1 \), which is different from the inverse function near \(x_0 = -1 \), \(y_0 = 1 \).

5. The Implicit Function Theorem (Important!)

For a smooth function \(F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m \), we may want solutions to the equation
\[
F(x, y) = 0
\]
with \(y \) expressed in terms of \(x \), defining a smooth function \(y = f(x) \). Suppose that \(F(x_0, y_0) = 0 \) (i.e. \(x = x_0 \), \(y = y_0 \) is a known solution), then we consider the \(m \times m \) matrix of partial derivatives
\[
F_y(x_0, y_0) = \left(\frac{\partial F_i(x_0, y_0)}{\partial y_j} \right).
\]
Theorem A.2. Suppose $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ is a C^k function, $k \geq 1$, in an open neighbourhood of (x_0, y_0) in $\mathbb{R}^n \times \mathbb{R}^m$, and suppose $F(x_0, y_0) = 0$. If the $m \times m$ matrix $F_y(x_0, y_0)$ is nonsingular, then there exists a unique, locally defined C^k function $f: \mathbb{R}^n \to \mathbb{R}^m$, $y = f(x)$, such that $f(x_0) = y_0$ and

$$F(x, f(x)) = 0$$

for all x belonging to some open neighbourhood of x_0 in \mathbb{R}^n. Moreover,

$$f_x(x_0) = -[F_y(x_0, y_0)]^{-1} F_x(x_0, y_0).$$

For example, if $F: \mathbb{R}^3 \to \mathbb{R}^2$ is given by

$$F(x, y_1, y_2) = \begin{pmatrix} xy_1 y_2 - 1 \\ x^2 - y_2 \end{pmatrix},$$

then $F(1, 1, 1) = 0$ in \mathbb{R}^2, and its partial derivative with respect to $y = (y_1, y_2) \in \mathbb{R}^2$ is

$$F_y(x, y) = \begin{pmatrix} \frac{\partial F_1}{\partial y_1} & \frac{\partial F_1}{\partial y_2} \\ \frac{\partial F_2}{\partial y_1} & \frac{\partial F_2}{\partial y_2} \end{pmatrix} = \begin{pmatrix} xy_2 & xy_1 \\ 0 & -1 \end{pmatrix}$$

which evaluates at the point $(x_0, y_0) = (1, 1, 1)$ to

$$F_y(x_0, y_0) = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix},$$

which is nonsingular, and therefore by the Implicit Function Theorem, $y = (y_1, y_2)$ can be uniquely solved near $x = 1$, $y_1 = 1$, $y_2 = 1$ as some smooth function $f: \mathbb{R} \to \mathbb{R}^2$, $y = f(x) = (f_1(x), f_2(x))$ with $f_1(1) = 1$ and $f_2(1) = 1$. (In this example, $y_1 = f_1(x)$ and $y_2 = f_2(x)$ can be found explicitly, and the conclusions of the theorem checked by explicit calculation.)

6. Taylor’s Theorem With Remainder

A C^{k+1} ($k \geq 1$) function $f: \mathbb{R}^n \to \mathbb{R}^m$ can be approximated, near a point x_0 in its domain, by its Taylor polynomial of degree k at $x_0 = (x_{0_1}, x_{0_2}, \ldots x_{0_n})$:

$$f(x) = \sum_{|i|=0}^{k} \frac{1}{i_1!i_2!\cdots i_n!} \frac{\partial^{\sum_{i} i} f(x_0)}{\partial x_1^{i_1} \partial x_2^{i_2} \cdots \partial x_n^{i_n}} (x_1-x_{0_1})^{i_1}(x_2-x_{0_2})^{i_2}\cdots(x_n-x_{0_n})^{i_n} + R(x)$$

where $|i| = i_1 + i_2 + \cdots + i_n$ and the remainder $R(x)$ satisfies $R(x) = O(\|x-x_0\|^{k+1})$.