Euclidean norm

If \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \), then its Euclidean norm is \(\|x\| = \sqrt{\sum_{j=1}^{n} x_j^2} \).

Maps

In our notes and the textbook, maps (i.e. functions) are written

\[f : \mathbb{R}^n \to \mathbb{R}^m \]

when the domain of definition of \(f \) contains an open subset of \(\mathbb{R}^n \) and the range of \(f \) is a subset of \(\mathbb{R}^m \). The domain of definition often is not explicitly specified.

The derivative

“Big oh” and “little oh” notation: If \(f : \mathbb{R}^n \to \mathbb{R}^m \) and \(g : \mathbb{R}^n \to \mathbb{R}^m \) are two maps defined (at least) in an open neighbourhood of a point \(x_0 \in \mathbb{R}^n \), and if \(\lim_{x \to x_0} g(x) = 0 \), then we say that

\[f(x) = o(g(x)) \text{ as } x \to x_0 \]

(“\(f \) is little oh of \(g \)” if \(\lim_{x \to x_0} \|f(x)\|/\|g(x)\| = 0 \) (roughly speaking, if \(f \) goes to zero “faster” than \(g \) does, as \(x \to x_0 \)). For example, for \(n = 1 \) and \(m = 1 \) we have

\[e^x - 1 - x = o(|x|) \text{ as } x \to 0. \]

Similarly, we say that

\[f(x) = O(g(x)) \text{ as } x \to x_0 \]

(“\(f \) is big oh of \(g \)” if there is a constant \(C \geq 0 \) such that \(\|f(x)\| \leq C\|g(x)\| \) for all \(x \) sufficiently close to \(x_0 \) (roughly speaking, if \(f \) goes to zero “at least as fast” as \(g \) does, as \(x \to x_0 \)). For example, we have (see Taylor Expansions, below)

\[e^x - 1 - x = O(|x|^2) \text{ as } x \to 0. \]

The derivative of a map: If \(f : \mathbb{R}^n \to \mathbb{R}^m \) is a continuous map (i.e. function), then the derivative (sometimes called the Jacobian matrix) of \(f \) is the \(m \times n \) matrix

\[f_x(x) = \left(\frac{\partial f_i(x)}{\partial x_j} \right), \]

where \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, n \), provided all these partial derivatives exist.

For example, if \(f : \mathbb{R}^3 \to \mathbb{R}^2 \) is given by

\[f(x) = \begin{pmatrix} x_1 x_2 x_3 - 1 \\ x_1^2 - x_3 \end{pmatrix}, \]
then its derivative is the 2×3 matrix of partial derivative expressions

$$f_x(x) = \begin{pmatrix} x_2 x_3 & x_1 x_3 & x_1 x_2 \\ 2 x_1^2 & 0 & -1 \end{pmatrix}$$

and its derivative evaluated at the point $x_0 = (1, 1, 1)$ is the constant 2×3 matrix

$$f_x(x_0) = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & -1 \end{pmatrix}$$

In general, if all first order partial derivatives of all components of f exist at the point x_0, then it can be proved that the derivative of f at x_0 is the unique matrix $A = f_x(x_0)$ that satisfies

$$f(x_0 + h) = f(x_0) + Ah + R(h)$$

for all $h \in \mathbb{R}^n$ near 0, where $R(h) = o(\|h\|)$ as $h \to 0$. This property is sometimes taken as the definition of $f_x(x_0)$.

If $k \geq 1$ is an integer, we say the map f is C^k if all partial derivatives of all components of f, up to and including order k, exist and are continuous. We say f is smooth if it is C^k for some integer $k \geq 1$. If f is C^2 in an open neighbourhood of $x = x_0$, then it can be proven that

$$f(x_0 + h) = f(x_0) + f_x(x_0)h + R(h)$$

for all $h \in \mathbb{R}^n$ near 0, where $R(h) = O(\|h\|^2)$ as $h \to 0$. Notice that this gives us a little more information than the statement $R(h) = o(\|h\|)$ as $h \to 0$.

The Chain Rule

If $g : \mathbb{R}^n \to \mathbb{R}^m$ and $f : \mathbb{R}^m \to \mathbb{R}^k$ are two maps, their composition is the map $f \circ g : \mathbb{R}^n \to \mathbb{R}^k$ defined by

$$f \circ g (x) = f(g(x)),$$

or

$$f \circ g (x) = f(u), \quad \text{where} \quad u = g(x).$$

By the Chain Rule (Theorem), under suitable conditions we have

$$(f \circ g)_x(x) = f_u(g(x))g_x(x),$$

where the right hand side is the matrix product of the $k \times m$ matrix of partial derivatives of f, evaluated at $u = g(x)$, with the $m \times n$ matrix of partial derivatives of g, evaluated at x.

Inverse maps

Consider the expression $y = f(x)$, where $f : \mathbb{R}^n \to \mathbb{R}^n$ is a map. We ask whether we can solve uniquely for x in terms of y, as $x = g(y)$, in other words, whether $g = f^{-1}$ exists as a well-defined map (i.e. function).
Theorem A.1 (Inverse Function Theorem). Suppose \(f : \mathbb{R}^n \to \mathbb{R}^n \) is a \(C^k \) map, \(k \geq 1 \), in an open neighbourhood of \(x_0 \), and let \(y_0 = f(x_0) \). If the \(n \times n \) matrix \(f_x(x_0) \) is nonsingular, then there exists a unique, locally defined (i.e. whose domain of definition contains an open neighbourhood of \(y_0 \) in \(\mathbb{R}^n \)), \(C^k \) map \(g : \mathbb{R}^n \to \mathbb{R}^n \), with \(x = g(y) \), such that

\[
g(f(x)) = x
\]

for all \(x \) belonging to an open neighbourhood of \(x_0 \) in \(\mathbb{R}^n \).

The unique (locally defined) map \(g \) in this theorem is called the inverse map (or inverse function) for \(f \), near \((x_0, y_0) \), and is denoted by \(g = f^{-1} \). Recall that if \(f \) is not 1-to-1, then \(g = f^{-1} \) could depend on \(x_0 \). For example, when \(n = 1 \) the inverse map for \(f(x) = x^2 \) that is defined near \((x_0, y_0) = (1,1) \), is different from the inverse map that is defined near \((x_0, y_0) = (-1,1) \).

The Implicit Function Theorem (Important!)

For a smooth map \(F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m \), we will often want solutions to the equation

\[
F(x, y) = 0
\]

with \(y \) expressed in terms of \(x \), as \(y = f(x) \), defining a smooth map \(f \) near a known specific solution. Suppose that \(F(x_0, y_0) = 0 \) (i.e. \(x = x_0 \), \(y = y_0 \) is a known specific solution), then we consider the \(m \times m \) matrix of partial derivatives

\[
F_y(x_0, y_0) = \left(\frac{\partial F_i(x_0, y_0)}{\partial y_j} \right).
\]

Theorem A.2 (Implicit Function Theorem). Suppose \(F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m \) is a \(C^k \) map, \(k \geq 1 \), in an open neighbourhood of \((x_0, y_0) \) in \(\mathbb{R}^n \times \mathbb{R}^m \), and suppose \(F(x_0, y_0) = 0 \). If the \(m \times m \) matrix \(F_y(x_0, y_0) \) is nonsingular, then there exists a unique, locally defined \(C^k \) map \(f : \mathbb{R}^n \to \mathbb{R}^m \), \(y = f(x) \), such that \(f(x_0) = y_0 \) and

\[
F(x, f(x)) = 0
\]

for all \(x \) in the domain of definition of \(f \) in \(\mathbb{R}^n \). Moreover,

\[
f_x(x_0) = -[F_y(x_0, y_0)]^{-1} F_x(x_0, y_0).
\]

For example, if \(F : \mathbb{R}^3 \to \mathbb{R}^2 \) is given by

\[
F(x, y_1, y_2) = \begin{pmatrix} xy_1 y_2 - 1 \\ x^2 - y_2 \end{pmatrix},
\]

then \(F(1,1,1) = 0 \) in \(\mathbb{R}^2 \), and its partial derivative with respect to \(y = (y_1, y_2) \in \mathbb{R}^2 \) is

\[
F_y(x, y) = \begin{pmatrix} \frac{\partial F_1}{\partial y_1} & \frac{\partial F_1}{\partial y_2} \\ \frac{\partial F_2}{\partial y_1} & \frac{\partial F_2}{\partial y_2} \end{pmatrix} = \begin{pmatrix} xy_2 & xy_1 \\ 0 & -1 \end{pmatrix}
\]

which evaluates at the point \((x_0, y_0) = (1,1,1)\) to

\[
F_y(x_0, y_0) = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix},
\]
which is nonsingular, and therefore by the Implicit Function Theorem, \(y = (y_1, y_2) \) can be uniquely solved near \(x = 1, y_1 = 1, y_2 = 1 \) as some smooth map \(f : \mathbb{R} \to \mathbb{R}^2, y = f(x) = (f_1(x), f_2(x)) \) with \(f_1(1) = 1 \) and \(f_2(1) = 1 \). (In this example, \(y_1 = f_1(x) \) and \(y_2 = f_2(x) \) can be found explicitly, and the conclusions of the theorem can be checked by explicit calculation.)

Taylor polynomial approximations

A \(C^{k+1} \) \((k \geq 1)\) map \(f : \mathbb{R}^n \to \mathbb{R}^m \) can be approximated, near a point \(x_0 \) in the interior of its domain, by its Taylor polynomial of degree \(k \) at \(x_0 = (x_{01}, x_{02}, \ldots, x_{0n}) \):

\[
 f(x) = \sum_{|\mathbf{i}|=0}^{k} \frac{1}{i_1!i_2!\ldots i_n!} \frac{\partial^{|\mathbf{i}|} f(x_0)}{\partial x_1^{i_1} \partial x_2^{i_2} \ldots \partial x_n^{i_n}} (x_1 - x_{01})^{i_1}(x_2 - x_{02})^{i_2} \cdots (x_n - x_{0n})^{i_n} + R(x)
\]

where \(|\mathbf{i}| = i_1 + i_2 + \cdots + i_n\) and the remainder \(R(x) \) satisfies \(R(x) = O(\|x - x_0\|^{k+1}) \). (This is a consequence of the multivariable version of Taylor’s Theorem with Remainder.)