Example 3.5 A discrete-time fixed iteration

\[x_{n+1} = x_n + r - x_n^2 \]

where \(r \) is a parameter near \(0 \).

Fixed points \(f(x) = x, \ x + r - x^2 = x, \ r - x^2 = 0 \), \(x^2 = r \). No solution if \(r < 0 \). If \(r > 0 \):

- If \(r < 0 \) there are no fixed points.
- If \(r = 0 \) there is one fixed point \(x^* = 0 \).
- If \(r > 0 \) there are two fixed points \(x_1 = -\sqrt{r}, \ x_2 = \sqrt{r} \).

Linearized stability:

\[f(x) = x + r - x^2, \quad f'(x) = 1 - 2x. \]

- If \(r = 0 \), \(x^* = 0 \) then \(f'(0) = 1 \) and it's unstable.
- If \(r > 0 \), \(x_1 = -\sqrt{r} \) then \(f'(-\sqrt{r}) = 1 + 2\sqrt{r} > 1 \) and \(x_1 = -\sqrt{r} \) is unstable.
- If \(r > 0 \), \(x_2 = \sqrt{r} \) then \(f'(\sqrt{r}) = 1 - 2\sqrt{r} < 1 \). If \(r \) is near \(0 \) then \(|f'| < 1 \) and \(x_2 = \sqrt{r} \) is stable.\(r < 1 \) then \(-1 < 1 - 2\sqrt{r} < 1\).

Steady-state diagrams and phase portraits:

For critical parameter value \(r = 0 \):

- \(x^* = 0 \) (unstable)

Phase portrait:

- \(x^* = 0 \) is unstable, and semistable, and therefore unstable.

Changing \(r \) from \(0 \) translates the curve vertically by \(r \) units.

- \(r < 0 \)
- \(r > 0 \)

Bifurcation diagram (\(x \) vs \(r \), showing fixed points and stability):
Example 3.6 Discrete-time population model.

Non-overlapping generations: \(A \) is generation number \(n \geq 0, 1, 2, 3, \ldots \)

\(N_n \) is population of generation \(n \) [individuals]

Population of next generation depends on population of current generation.

\[N_{n+1} = f(N_n) \]

\(N \) is continuous, \(n \) is discrete time

Some desirable features of model:

- \(f(0) = 0 \) and \(f(N) \) is a fixed point (no predators \(\Rightarrow \) no offspring)
- For small \(N > 0 \), \(f(N) \) should be increasing (lots of resources for individual, \(\Rightarrow \) offspring)
- For large \(N > 0 \), \(f(N) \) should be decreasing (getting crowded, \(\Rightarrow \) offspring have less chance to survive)

A particular model: discrete-time logistic model

\[N_{n+1} = r N_n (1 - \frac{N_n}{K}) \]

where \(r, K \) are positive constants

Determine all analyzers and rescaling: non-dimensionalize the model (optimal)

Only one variable can be rescaled, time is an integer and cannot be rescaled.

Let \(x = \frac{N}{A} \), where \(A \) is a constant with units of individuals

then \(N = A \), \(N_n = A x_n \) for all \(n \), \(N_{n+1} = r N_n (1 - \frac{N_n}{K}) \) becomes

\[A x_{n+1} = r A x_n (1 - \frac{A x_n}{K}) \]

\[x_{n+1} = r x_n (1 - \frac{A x_n}{K}) \]

\(A \) can be chosen to eliminate only one parameter: choose \(A = K \). Then we get

\[x_{n+1} = r x_n (1 - x_n) \]

Consider only \(0 \leq x_n \leq 1, 0 < r \leq 4 \) so that \(0 \leq x_{n+1} \leq 1 \), all iterates remain in \([0, 1] \) (also, maximum of \(x (1-x) \) is \(\frac{1}{4} \))

Fixed points \(f(x) = x, \) \(r x (1-x) = x \), \(r x - r x^2 = x \), \(r x^2 + (1-r) x = 0 \)

\[x [r x + (1-r)] = 0 \]

\(x = 0 \) or \(r x + (1-r) = 0 \)

Fixed points are \(x = 0, x = \frac{1}{r} \) only in \([0, 1] \) if \(0 < r \leq 4 \)

Plot of fixed points \(x \) vs \(r \), \(0 \leq x \leq 1, 0 < r \leq 4 \)

If we add stability information, we get a bifurcation diagram.

Expected transcritical bifurcation at \(r_c = 1, x_c = 0 \) (intersection with oblique tangent)
Linearized stability: \(f(x) = x(x - r) = rx - rx^2, \quad f'(x) = r - 2rx \)

At \(x^* = 0 \): \(\mu = f'(0) = r \) (\(0 < r \leq 4 \)), \(|\mu| < 1 \) for stability, i.e., \(1 < r < 1 \)

- If \(0 < r < 1 \) then \(f(x) \) is stable and \(x^* = 0 \) is stable.
- If \(r = 1 \) then \(f(x) \) is stable, but stability is undetermined (local bifurcation).
- If \(r > 1 \) then \(f(x) \) is unstable and \(x^* = 0 \) is unstable.