Example 3.1. Let \(\frac{dm}{dt} + \frac{1}{2} m = 10 + 5 \sin 2t \), \(m(0) = m_0 \)

\[m(t) = m(t, m_0) = 20 - \frac{300}{17} \cos 2t + \frac{10}{17} \sin 2t + \left(m_0 - \frac{300}{17} \right) e^{-\frac{t}{2}} \]

After one period \(T = 2 \pi/2 = \pi \) the amount of chemical in the tank is

\[m_1 = P(m_0) = m(\pi, m_0) = \frac{300}{17} + \left(m_0 - \frac{300}{17} \right) e^{-\frac{\pi}{2}} \]

After two periods, the amount is

\[m_2 = m(2\pi, m_0) = \frac{300}{17} + \left(m_0 - \frac{300}{17} \right) e^{-\frac{2\pi}{2}} = \frac{300}{17} + \left(m_0 - \frac{300}{17} \right) \left(e^{-\frac{\pi}{2}} \right)^2 \]

etc., \(m_n = m(n\pi, m_0) = \frac{300}{17} + \left(m_0 - \frac{300}{17} \right) \left(e^{-\frac{\pi}{2}} \right)^n \) for any \(n > 0 \).

On the other hand, let \(P(m) = \frac{300}{17} + \left(m - \frac{300}{17} \right) e^{-\frac{\pi}{2}} \). Then \(m_1 = P(m_0) \).

We compute

\[P(m_1) = P(P(m_0)) = \frac{300}{17} + \left(P(m_0) - \frac{300}{17} \right) e^{-\frac{\pi}{2}} \]

\[= \frac{300}{17} + \left[\frac{300}{17} + \left(m_0 - \frac{300}{17} \right) e^{-\frac{\pi}{2}} \right] e^{-\frac{\pi}{2}} \]

\[= \frac{300}{17} + \left(m_0 - \frac{300}{17} \right) \left(e^{-\frac{\pi}{2}} \right)^2 \]

\[= m_2 \]

Similarly, \(P(m_2) = m_3 \), etc., \(m_n = P(m_n) \) for \(n = 0, 1, 2, \ldots \)

\[m_1 = P(m_0), \quad m_2 = P(m_1) = P(P(m_0)) = P^2(m_0), \quad m_3 = P(m_2) = P(P(m_1)) = P^3(m_0) \]

\[m_n = P^0(m_0), \quad P^n = P \text{ for } n = 2, 3, 4, \ldots, \quad P^0 = \text{Id} \]

so we can write

\[m_n = P^n(m_0), \quad n = 0, 1, 2, \ldots \]

To find the amount of chemical in the tank after \(n \) periods, we can iterate \(P \), \(n \) times.

Notice that

\[\lim_{n \to \infty} m_n = \lim_{n \to \infty} \left[\frac{300}{17} + \left(m_0 - \frac{300}{17} \right) \left(e^{-\frac{\pi}{2}} \right)^n \right] = \frac{300}{17} \]

and \(P\left(\frac{300}{17} \right) = \frac{300}{17} \)

\(m^* = \frac{300}{17} \) is a fixed point of \(P \) (a solution of \(P(m) = m \)) and it is stable.

What if \(m_0 > \frac{300}{17} \)?
Graphically, a fixed point \(P(m) = m \) can be found as an intersection of the curves \(y = P(m) \) and \(y = m \). The point of intersection forms the line.

We can also graphically construct sequences \(m_0, m_1, m_2, \ldots \) and find the stability of fixed points.

One-dimensional maps

Let \(f : \mathbb{R} \to \mathbb{R} \) be a smooth function. It generates a sequence \(x_0, x_1, x_2, \ldots \) by the difference equation:

\[x_{n+1} = f(x_n) \]

The term "map" can refer to the function \(f \), or its associated difference equation.

As seen above, \(x_n = f^n(x_0) \) where \(f^n \) is \(f \) composed \(n \) times.

The orbit (or trajectory) starting at \(x_0 \) is the sequence \(x_0, x_1, x_2, \ldots \) generated by \(f \).

Phase portraits are collections of points on a line. e.g., \(\ldots, x_{-1}, x_0, x_1, x_2, \ldots \)

A special type of orbit is a fixed point: a solution \(x = x^* \), e.g., \(f(x^*) = x^* \).

The orbit of a fixed point is itself, \(\ldots, x^*, x_1 = f(x^*), x_2, f(x_1), \ldots \).

A fixed point \(x^* \) is (asymptotically) stable if all sufficiently close \(x \) get close to \(x^* \) as \(n \to \infty \). A fixed point \(x^* \) is unstable if at least one \(x \) escapes to \(\infty \) as \(n \to \infty \).