\[x_{n+1} = \frac{rx_n (1-x_n)}{f(x_n)} \]

Fixed points

\[x^* = 0 \ (\text{all } r) \]
\[x^* = 1 - \frac{r-1}{r} \quad (1 < r \leq 4) \]

+ Linearized stability

Fixed points of \(f^2(x) = f(f(x)) \) that are not already fixed points of \(f(x) \):

\[
\begin{align*}
p &= \frac{r+1 - \sqrt{(r-3)(r+1)}}{2r} \\
q &= \frac{r+1 + \sqrt{(r-3)(r+1)}}{2r}
\end{align*}
\]

\(3 < r \leq 4 \)

\(f(f(p)) = p, \ f(f(q)) = q \)
\(f(p) = q, \ f(q) = p \)

\[\begin{array}{c}
p \\
\bigcirc \!
\end{array} \]

\[\begin{array}{c}
f \\
q
\end{array} \]
Linearized stability of p, q as fixed points of $f^2(x)$:

$$
\mu = (f^2)'(p) = \frac{d}{dx} f(f(x)) \bigg|_{x=p} \\
= f'(f(p)) f'(p) \bigg|_{x=p} \quad \text{(Chain Rule)} \\
= f'(f(p)) f'(p) \\
= f'(q) f'(p) \\
= (r-2r q)(r-2rp) \\
= (r-(r+1)-\sqrt{(r-3)(r+1)})(r-(r+1)+\sqrt{(r-3)(r+1)}) \\
= (-1-\sqrt{(r-3)(r+1)})(-1+\sqrt{(r-3)(r+1)}) \\
= 1 - \frac{(r-3)(r+1)}{r^2-2r-3} \\
= 4 + 2r - r^2 \quad (3 < r \leq 4) \\
\text{If } r = 3, \quad \mu = 1 \\
\text{If } r > 3, \quad \frac{d\mu}{dr} = 2-2r < 0 \\
\mu \text{ decreases as } r \text{ increases}
$|\mu| < 1 \text{ i.e. } -1 < \mu < 1$, at least for $r > 3$ and ν sufficiently close to 3 and both p, q are stable as fixed points of $f^3(\nu)$.

If r increases further, $\mu = -1$ is possible

$\mu = 4 + 2r - r^2 = -1$

$\iff r^2 - 2r - 5 = 0$

$r = 1 \pm \sqrt{6} \quad (2 < \sqrt{6} < 3)$

$-2 < 1 - \sqrt{6} < -\frac{3}{2}$ this value is irrelevant but $3 < 1 + \sqrt{6} < 4$
i. If $3 < r < 1 + \sqrt{6} \approx 3.449$
then p, q are stable

ii. If $r = 1 + \sqrt{6}$
then linearized stability fails

iii. If $1 + \sqrt{6} < r \leq 4$
then p, q are unstable

Bifurcation diagram so far

What does it mean for p, q to be stable/unstable as fixed points of f^2?

For $r = 3$, fixed points of $f(x) = 3x(1-x)$
are $x^* = 0, \ x^* = \frac{3}{3}, \ and \ \mu = f'(\frac{3}{3}) = -1$
(linearized stability fails)
Staircase/cubeweb diag. for f

$y = x$

slope of tangent is $\mu = -1$

$x^x = \frac{2}{3}$ is stable

Staircase/cubeweb diag. for f^2

$y = f(f(x)) = 9x(1-x)(1-3x+3x^2)$

Every iterate of f^2 corresponds to two itertes of f
\[x_{n+2} = f(f(x_n)) \]

When \(3 < r < 1 + \sqrt{6} \), fixed points of \(f \) are \(x^* = 0 \), \(x^* = 1 - \frac{1}{r} \), and \(\mu = f'(1-\frac{1}{r}) > -1 \).

Fixed points of \(f^2 \) are \(0, 1 - \frac{1}{r}, p, q \).

Staircase/cobweb for \(f^2 \)

Every iterate here corresponds to two iterates of \(f \).
\[\{ x_0, x_1, x_2, \ldots \} \] "converges" to \(\{ p, q \} \)

We say the 2-cycle \(\{ p, q \} \) is stable if

they are stable as fixed points of \(f^2(x) \)

To investigate what happens for \(1 + \sqrt{6} < r \leq 4 \):

"Numerical" bifurcation diagrams

e.g. use Matlab, Maple, Excel, calculator

\[x_{n+1} = r x_n (1 - x_n) \]

Fix \(r \)
Pick arbitrary \(x_0 \) (e.g., \(x_0 = 0.1 \)).

Compute \(x_n \), \(n = 1, 2, 3, \ldots \)
up to some large \(n \).

If \(x_n \) are converging to a stable fixed point \(x^* \) then \(x_n \approx x^* \) for large \(n \).

i.e. \(x^* \) is a "steady state" solution.

\[x_n = \text{steady state} + \text{transient} \Rightarrow \text{transient} \to 0 \text{ as } n \to \infty \]

Discard the first \(N \) (e.g. \(N = 350 \)) points so transient \(\approx 0 \).

E.g. \(r = 0.5 \) (\(x^* = 0 \) is a stable fixed point)
\(x_0 = 0.1 \)

Then \(x_1 = 0.045 \)
\(x_2 = 0.0214875 \)
\[\vdots \]
\(x_{351} = 0.0000000 \)
\(x_{352} = 0.0000000 \)

Note: there is roundoff error.
Actually \(x_{351} \approx 10^{-18} \).
Plot n vs x_n

Plot r vs x only plot $x_{351}, x_{352}, \ldots, x_{500}$

Do systematically for small increments in r

Plots points close to $x^* = 1 - \frac{1}{r}$