3. B Forced periodic vibrations

Forced with damping \((\gamma > 0)\)

\[
m u'' + \gamma u' + ku = F_0 \cos(\omega t)
\]

or \(F_0 \sin(\omega t)\)

Forcing frequency

Forcing amplitude

Non homogeneous linear eqn.

Gen. soln. of corresp. homog. eqn.

\[
u_c(t) = c_1 u_1(t) + c_2 u_2(t)
\]

(3 cases for complementary solution)

Particular solution (method of undet. coeff.)

\[
U(t) = A \cos(\omega t) + B \sin(\omega t)
\]

(why "\(s = 0\)"?)

Gen. soln. of nonhomogeneous eqn.

\[
u(t) = u_c(t) + U(t)
\]

\[
= c_1 u_1(t) + c_2 u_2(t) + A \cos(\omega t) + B \sin(\omega t)
\]

\(\rightarrow 0 \text{ as } t \rightarrow \infty\)

\(R \cos(\omega t - \phi)\)

forced response

or "steady-state" soln.

Transient solution
\[u(t) \approx U(t) \text{ for large } t \]

A, B can be determined in terms of \(m, \gamma, k, F_0, \omega \) (Exercise)

Then \(R = \sqrt{A^2 + B^2} = \text{amplitude of forced response} \)

\[\tan \theta = \frac{B}{A} \]

After a lot of algebra

\[R = \frac{F_0}{\sqrt{m^2(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2}} \]

where \(\omega_0 = \sqrt{\frac{k}{m}} \)

If \(\gamma^2 < 2mk \), it can be shown that the maximum of \(R = R(\omega) \) for fixed \(F_0, m, k, \gamma \) is attained at

\[\omega = \omega_{\text{max}} = \omega_0 \sqrt{1 - \frac{\gamma^2}{2mk}} \] \hspace{1cm} \text{(Exercise)}

and

\[R_{\text{max}} = R(\omega_{\text{max}}) = \frac{F_0}{8m_0 \sqrt{1 - \frac{\gamma^2}{4mk}}} \]
For fixed m, k, F_0: as $\gamma \to 0^+$ (small damping), $\omega_{\text{max}} \approx \omega_0$ natural freq. of mass+spring

$R_{\text{max}} \approx \frac{F_0}{\gamma \omega_0} \to \infty$

as γ decreases

This is called resonance
Forced vibration without damping (ζ = 0)

\[m u'' + k u = F_0 \cos(\omega t) \]

General solution of corresponding homogeneous eqn.

\[u_c(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t), \quad \omega_0 = \sqrt{\frac{k}{m}} \]

Particular solution

\[U(t) = A \cos(\omega t) + B \sin(\omega t) \quad \omega \neq \omega_0 \]

\[U(t) = t \left[A \cos(\omega_0 t) + B \sin(\omega_0 t) \right] \quad \omega = \omega_0 \]

\[= R t \cos(\omega_0 t - \delta) \]

If \(\omega \neq \omega_0 \), then \(A = \frac{F_0}{m(\omega_0^2 - \omega^2)}, \quad B = 0 \) \(\text{(Exercise)} \)

\[u(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) + \frac{F_0}{m(\omega_0^2 - \omega^2)} \cos(\omega t) \]

If \(u(0) = 0, \ u'(0) = 0 \) then

\[c_1 = -\frac{F_0}{m(\omega_0^2 - \omega^2)}, \quad c_2 = 0 \] \(\text{(Exercise)} \)

and motion is given by
\[u(t) = -\frac{F_0}{m(\omega_0^2 - \omega^2)} \cos(\omega_0 t) + \frac{F_0}{m(\omega_0^2 - \omega^2)} \cos(\omega t) \]

\[= \frac{F_0}{m(\omega_0^2 - \omega^2)} \left[\cos(\omega t) - \cos(\omega_0 t) \right] \]

\[= \frac{F_0}{m(\omega_0^2 - \omega^2)} \left[-2 \sin\left(\frac{\omega t + \omega_0 t}{2}\right) \sin\left(\frac{\omega t - \omega_0 t}{2}\right) \right] \]

\[= \frac{2F_0}{m(\omega_0^2 - \omega^2)} \sin\left(\frac{\omega_0 - \omega}{2} t\right) \sin\left(\frac{\omega_0 + \omega}{2} t\right) \]

If \(\omega \neq \omega_0 \) then \(\left| \frac{2F_0}{m(\omega_0^2 - \omega^2)} \right| \) is large

\(\left| \frac{\omega_0 - \omega}{2} \right| \) is small (slow frequency)

\(\left| \frac{\omega_0 + \omega}{2} \right| \approx \omega_0 \) is relatively large (fast frequency)

\[u(t) = \left[\frac{2F_0}{m(\omega_0^2 - \omega^2)} \sin\left(\frac{\omega_0 - \omega}{2} t\right) \right] \sin\left(\frac{\omega_0 + \omega}{2} t\right) \]

slowly varying

"amplitude"
\[
\begin{align*}
\text{If } w &= w_0 \quad \text{(Example).} \\
u(t) &= c_1 \cos(w_0 t) + c_2 \sin(w_0 t) + \left[\frac{F_0}{2 mn_0} \right] \sin(\omega t) \\
\text{bounded} & \quad \text{unbounded}
\end{align*}
\]
\[u = \frac{F_0}{2m\omega_0} \cdot t \]

\[u = \frac{F_0}{2m\omega_0} \cdot t \sin(\omega t) \]

\[u = -\frac{F_0}{2m\omega_0} \cdot t \]