Example 2.3.B. A mass is projected upwards from the earth's surface with initial velocity \(v_0 \).

Considering gravity but neglecting friction, determine the value of \(v_0 \) needed to reach a maximum altitude \(h \). Also find the escape velocity.

Gravitational acceleration is proportional to the inverse square of the distance between the mass and the earth's centre with constant of proportionality \(gR^2 \), \(g \) = grav. accel. at earth's surface \((\approx 9.8 \text{ m/s}^2 \) \)

\(R \) = earth's radius \((\approx 6.4 \times 10^6 \text{ m} \)

Let \(x(t) = \) altitude at time \(t \)

\(x = \) upwards distance from Earth's surface

\(v = \frac{dx}{dt} = \) upwards velocity

\(a = \frac{dv}{dt} = \) upwards acceleration
\[
\frac{dv}{dt} = -gR^2 \frac{1}{(R+x)^2}
\]

Too many variables: \(v, x, t \)

Trick: think of \(v \) as function of \(x \):

Chain rule \(\frac{dv}{dt} = \frac{dv}{dx} \frac{dx}{dt} \)

\[
v \frac{dv}{dx} = -gR^2 \frac{1}{(R+x)^2}
\]

\[
v \frac{dv}{dx} = -gR^2 \int \frac{1}{(R+x)^2} \, dx
\]

\[
\int uv \, du = -gR^2 \int \frac{1}{(x+R)^2} \, dx
\]
\[\frac{1}{2}v^2 = gR^2 (x+R)^{-1} + c \]

Solve for \(c \) (don't have to solve for \(v \) first)

\[v = v_0 \text{ when } x = 0 \]

\[\frac{1}{2}v_0^2 = gR + c \]

so \(c = \frac{1}{2}v_0^2 - gR \)

and

\[\frac{1}{2}v^2 = \frac{gR^2}{(x+R)} + \frac{1}{2}v_0^2 - gR \]

At max. altitude \(x=h \) : \(v(h) = 0 \)

\[\frac{1}{2}0^2 = \frac{gR^2}{(h+R)} + \frac{1}{2}v_0^2 - gR \]

Solve for \(v_0 \):

\[v_0 = \pm \sqrt{\frac{2gRh}{h+R}} \]

Take + sign ("physics")

\[v_0 = \sqrt{\frac{2gRh}{h+R}} \]

initial vel. to reach max. alt. h
Escape velocity: \(v_0 \) when \(h \to \infty \)

\[
\begin{align*}
v_{\text{escape}} &= \lim_{h \to \infty} v_0 \\
&= \lim_{h \to \infty} \sqrt{\frac{2gRh}{h + R}} \\
&= \lim_{h \to \infty} \sqrt{\frac{2gR}{1 + R/h}} \\
&= \sqrt{2gR}
\end{align*}
\]

2.4 Differences between linear and nonlinear differential equations

Linear

\[
y' + p(t)y = g(t)
\]

Nonlinear General

\[
y' = f(t, y)
\]

Nonlinear or linear (typically nonlinear)
Theorem 2.4.1 [Existence and uniqueness for 1st-order linear equations]
If the functions \(p(t) \) and \(g(t) \) are continuous on an open interval \(I : \alpha < t < \beta \) containing the point \(t_0 \), then there exists a unique solution \(y = \phi(t) \) of the initial value problem
\[
y' + p(t)y = g(t), \quad y(t_0) = y_0 \quad (1), (2)
\]
defined for all \(\alpha < t < \beta \), for any prescribed initial value \(y_0 \).

Theorem 2.4.2 [Existence and uniqueness for 1st-order equations]
If the functions \(f(t,y) \) and \(\frac{df}{dy}(t,y) \) are continuous in an open rectangle \(\alpha < t < \beta, \gamma < y < \delta \) containing the point \((t_0,y_0) \), then there exists a unique solution \(y = \phi(t) \) of the initial value problem
\[
y' = f(t,y), \quad y(t_0) = y_0 \quad (9)
\]
defined at least in some interval \(t_0 - h < t < t_0 + h \) that is contained in \(\alpha < t < \beta \).
Example 2.4, A

\[ty' + 2y - 4t^2 = 0, \quad y(1) = 2 \]

Linear: both Theorems apply, but 2.4.1 gives more information.

Write as

\[y' + \frac{2}{t} y = 4t, \quad y(1) = 2 \]

\[p(t) = \frac{2}{t}, \quad g(t) = 4t \]

\[p, g \text{ continuous on } -\infty < t < 0, \quad 0 < t < \infty \]

Only one of these intervals contains \(t_0 = 1 \). We know the solution is defined on \(0 < t < \infty \).

Exercise: Solve and verify \(0 < t < \infty \).
Example 2.4. B \quad y' - y^2 = 0 \quad y(0) = -2

Nonlinear: Thm. 2.4.1 does not apply

only 2.4.2 does

\[
y' = y^2, \quad y(0) = -2
\]

\[
f(t, y) \quad \frac{\partial f}{\partial y}(t, y) = 2y
\]

\(f, \frac{\partial f}{\partial y}\) are continuous on

\(-\infty < t < \infty, \quad -\infty < y < \infty\)

Solve:

\[
\frac{dy}{dt} = y^2
\]

\[
\frac{dy}{y^2} = dt
\]

\[
-\frac{1}{y} = t + c
\]

At \(t = 0, \quad y = -2\)

\[
\frac{1}{2} = 0 + c \quad , \quad c = \frac{1}{2}
\]
\[-\frac{1}{4}y = t + \frac{1}{2}\]
\[y = -\frac{1}{t + \frac{1}{2}}\]

\(t \neq -\frac{1}{2}\) so \(-\infty < t < -\frac{1}{2}\) or \(-\frac{1}{2} < t < \infty\)

The interval \(-\frac{1}{2} < t < \infty\) contains \(t_0 = 0\) so this is the interval on which the solution is defined:

\[y = y(t) = \phi(t) = -\frac{1}{t + \frac{1}{2}}, \quad -\frac{1}{2} < t < \infty\]
Exercise Find interval of definition of soln. to
\[y' = y^2, \quad y(0) = y_0 \]

i) \quad y_0 > 0
ii) \quad y_0 < 0
iii) \quad y_0 = 0

General solution

Linear eqns. have general solutions (formula with arb. constant that gives all solutions)
Nonlinear eqns. might not have a general solution.