1. \(y'' - 5y' + 4y = 0, \ y(0) = 2, \ y'(0) = -3. \)

The characteristic equation is

\[r^2 - 5r + 4 = (r - 4)(r - 1) = 0 \]

which has real distinct roots

\[r_1 = 4, \quad r_2 = 1. \]

The general solution is

\[y(t) = c_1 e^{4t} + c_2 e^t, \]

where \(c_1 \) and \(c_2 \) are arbitrary constants. To satisfy the initial conditions we need to choose \(c_1, \ c_2 \) so that

\[y(0) = c_1 + c_2 = 2, \quad y'(0) = 4c_1 + c_2 = -3, \]

therefore

\[c_1 = -\frac{5}{3}, \quad c_2 = \frac{11}{3}, \]

and the solution to the initial value problem is

\[y(t) = -\frac{5}{3} e^{4t} + \frac{11}{3} e^t. \]

2. \(t^2 y'' - 2y = 0, \ y(-1) = -1, \ y'(-1) = -4. \)

(a) In standard form, the differential equation is

\[y'' - \frac{2}{t^2} y = 0, \]

and the functions \(p(t) = 0, \ q(t) = -2/t^2, \ g(t) = 0 \) are all continuous on either of the open intervals \(-\infty < t < 0 \) or \(0 < t < +\infty \). The interval must contain the initial time \(t_0 = -1 \), so by Theorem 3.2.1 the unique solution \(y = \phi(t) \) is defined on the open interval

\[-\infty < t < 0. \]

(b) To verify that a given function is a solution, we differentiate it and see if it and its derivative(s) satisfy the differential equation. Differentiating \(y_1(t) = t^2 \) twice, we get \(y_1'(t) = 2t, \ y_1''(t) = 2 \), then \(t^2 y_1''(t) - 2y_1(t) = t^2 \cdot 2 - 2 \cdot 2 = 0 \), which verifies that \(y_1(t) = t^2 \) is a solution.

Doing the same for \(y_2(t) = 1/t = t^{-1} \), we get \(y_2'(t) = -1/t^2, \ y_2''(t) = 2/t^3 \), then \(t^2 y_2''(t) - 2y_2(t) = t^2 (2/t^3) - 2(1/t) = (2/t) - (2/t) = 0 \), which verifies that \(y_2''(t) = 1/t \) is a solution.

Since \(y_2(t) = 1/t \) is discontinuous at \(t = 0 \), **both** \(y_1(t) \) and \(y_2(t) \) are solutions on either \(-\infty < t < 0 \) or \(0 < t < \infty \).
(c) We already know $y_1(t)$ and $y_2(t)$ are solutions, it remains to verify that the Wronskian does not vanish:

$$W[y_1, y_2](t) = \begin{vmatrix} t^2 & t^{-1} \\ 2t & -t^{-2} \end{vmatrix} = (t^2)(-t^{-2}) - (t^{-1})(2t) = -3$$

which is nonzero for all t. So $y_1(t)$ is a solution, $y_2(t)$ is a solution, and $W[y_1, y_2](t) \neq 0$ are all true simultaneously on the two intervals

$$-\infty < t < 0, \quad \text{or} \quad 0 < t < \infty.$$

(d) By the results of parts (b) and (c), and the theory of second-order linear homogeneous differential equations, the general solution is

$$y(t) = c_1 t^2 + c_2 \frac{1}{t},$$

where c_1, c_2 are arbitrary constants. The initial conditions require

$$y(-1) = c_1 - c_2 = -1, \quad y'(-1) = -2c_1 - c_2 = -4,$$

therefore

$$c_1 = 1, \quad c_2 = 2,$$

and the solution to the initial value problem is

$$y = \phi(t) = t^2 + 2, \quad -\infty < t < 0.$$

3. $y'' + 2y' + 2y = 0, \quad y(0) = 1, \quad y'(0) = -1.$

The characteristic equation is

$$r^2 + 2r + 2 = 0,$$

which has complex roots

$$r_1 = -1 + i, \quad r_2 = -1 - i,$$

and the general solution is

$$y(t) = c_1 e^{-t} \cos t + c_2 e^{-t} \sin t,$$

where c_1, c_2 are arbitrary constants. Also, $y'(t) = c_1 (-e^{-t} \cos t - e^{-t} \sin t) + c_2 (-e^{-t} \sin t + e^{-t} \cos t)$.

Now we find c_1 and c_2 to satisfy the initial condition: evaluating the expressions above at $t = 0$, we get $y(0) = c_1$, $y'(0) = -c_1 + c_2$, therefore we solve

$$c_1 = 1, \quad -c_1 + c_2 = -1,$$

and get

$$c_1 = 1, \quad c_2 = 0.$$
The solution to the initial value problem is
\[y(t) = e^{-t} \cos t. \]

4. \(4y'' + 4y' + y = 0, \quad y(2) = -6, \quad y'(2) = 4. \)

The characteristic equation is
\[4r^2 + 4r + 1 = 0, \]
which has repeated roots
\[r_1 = -\frac{1}{2}, \quad r_2 = -\frac{1}{2}, \]
and the general solution is
\[y(t) = c_1 e^{-t/2} + c_2 te^{-t/2}, \]
where \(c_1, c_2 \) are arbitrary constants. Also, \(y'(t) = -\frac{1}{2}c_1 e^{-t/2} + c_2 (1 - \frac{1}{2}t) e^{-t/2}. \)

Now we find \(c_1 \) and \(c_2 \) to satisfy the initial condition: evaluating the expressions above at \(t = 2 \), we get \(y(2) = c_1 e^{-1} + c_2 2e^{-1}, \ y'(2) = c_1 \left(-\frac{1}{2}e^{-1}\right), \) therefore we must solve
\[e^{-1}c_1 + 2e^{-1} = -6, \quad -\frac{1}{2}e^{-1}c_1 = -4, \]
and get
\[c_1 = -8e, \quad c_2 = e. \]
The solution to the initial value problem is
\[y(t) = -8e \cdot e^{-t/2} + e \cdot te^{-t/2}. \]
(To make the algebra a little easier, we could write the general solution in terms of \(t - 2 \) instead of \(t \), as
\[y(t) = k_1 e^{-(t-2)/2} + k_2 (t - 2)e^{-(t-2)/2} \]
and solve more easily for \(k_1 = -6, \quad k_2 = 1, \) thus
\[y(t) = -6e^{-(t-2)/2} + (t - 2)e^{-(t-2)/2}, \]
which is the same as above.)

5. \(t^2 y'' + 9ty' + 16y = 0, \quad y(1) = -1, \quad y'(1) = 1. \)

(a) In standard form, the differential equation is
\[y'' + \frac{9}{t} y' + \frac{16}{t^2} y = 0, \]
and the functions \(p(t) = 9/t, \quad q(t) = 16/t^2, \quad g(t) = 0 \) are all continuous on either of the open intervals \(-\infty < t < 0\) or \(0 < t < +\infty\). The interval must contain the initial time \(t_0 = 1 \), so by Theorem 3.2.1 the unique solution \(y = \phi(t) \) is defined on the open interval
\[0 < t < \infty. \]
(b) Differentiating \(y_1(t) = t^{-4} \) twice, we get \(y_1'(t) = -4t^{-5}, \ y_1''(t) = 20t^{-6} \), then \(t^2y_1''(t) + 9ty_1'(t) + 16y_1(t) = t^2 \cdot 20t^{-6} + 9t(-4t^{-5}) + 16 \cdot t^{-4} = (20 - 36 + 16)t^{-4} = 0 \), which verifies that \(y_1(t) = t^{-4} \) is a solution.

To find another solution using the method of reduction of order, we put \(y = v(t)y_1(t) = v(t)t^{-4} \). Then we calculate \(y' = v't^{-4} - 4vt^{-5}, \ y'' = v''t^{-4} - 8vt^{-5} + 20vt^{-6} \) and substitute these expressions into the left-hand side of the differential equation:

\[
t^2(v''t^{-4} - 8vt^{-5} + 20vt^{-6}) + 9t(v't^{-4} - 4vt^{-5}) + 16(vt^{-4}) = 0.
\]

After simplifying, we get

\[
t^{-2}v'' + t^{-3}v' = 0
\]

(the coefficient of \(v \) should be 0). Multiplying by \(t^2 \), we get

\[
(v')' + \frac{1}{t} (v') = 0.
\]

This is a first-order linear equation for \(v' \). We may solve for \(v' \) by the method of integrating factors, or by separating variables. For example, multiplying by the integrating factor \(\mu(t) = e^{\int (1/t) dt} = e^\ln t = t \) (taking \(t > 0 \) because of the initial time \(t_0 = 1 \)), we get

\[
t(v')' + v' = 0
\]

\[
(tv')' = 0
\]

\[
tv' = c_2
\]

\[
v'(t) = \frac{c_2}{t},
\]

where \(c_2 \) is an arbitrary constant. Then integrate to get

\[
v(t) = \int \frac{c_2}{t} \, dt = c_1 + c_2 \ln |t| \quad (t \neq 0),
\]

where \(c_1 \) is also an arbitrary constant.

Then \(y(t) = v(t)y_1(t) = (c_1 + c_2 \ln |t|)t^{-4} \) is a solution for any \(c_1, c_2 \). Taking \(c_1 = 0 \) and \(c_2 = 1 \), we choose the solution

\[
y_2(t) = t^{-4} \ln |t|,
\]

which is not equal to a constant multiple of \(y_1(t) = t^{-4} \).

(c) To verify that \(y_1 \) and \(y_2 \) form a fundamental set of solutions, we note we have shown above that they are both solutions of the differential equation, on \(-\infty < t < 0 \) or on \(0 < t < \infty \) so it remains to compute the Wronskian

\[
W[y_1, y_2](t) = \begin{vmatrix}
t^{-4} & t^{-4} \ln |t| \\
-4t^{-5} & -4t^{-5} \ln |t| + t^{-5}
\end{vmatrix} = t^{-9} = \frac{1}{t^9},
\]

which we verify is never zero on \(0 < t < \infty \), or on \(-\infty < t < 0 \). So \(y_1 \) and \(y_2 \) form a fundamental set of solutions on

\[-\infty < t < 0 \quad \text{or} \quad 0 < t < \infty\]
(d) To solve the initial value problem we write down the general solution

\[y(t) = c_1 t^{-4} + c_2 t^{-4} \ln t, \]

(we use \(t > 0 \) because of the initial condition) and also compute its derivative \(y'(t) = -4c_1 t^{-5} + c_2 (t^{-5} - 4t^{-5} \ln t) \), then evaluate at \(t = 1 \) to get \(y(1) = c_1, \ y'(1) = -4c_1 + c_2 \). So we set

\[c_1 = -1, \quad -4c_1 + c_2 = 1 \]

in order to satisfy the initial conditions, therefore

\[c_1 = -1, \quad c_2 = -3, \]

and the solution to the initial value problem is

\[y = \phi(t) = -t^{-4} - 3t^{-4} \ln t, \quad 0 < t < \infty. \]