1. Solve the initial value problem \(y'' - 5y' + 4y = 0, \quad y(0) = 2, \quad y'(0) = -3. \)

2. Consider the initial value problem \(t^2 y'' - 2y = 0, \quad y(-1) = -1, \quad y'(-1) = -4. \)
 - (a) Determine on what open interval the solution \(y = \phi(t) \) of the initial value problem is defined.
 - (b) Verify that both \(y_1(t) = t^2 \) and \(y_2(t) = 1/t \) are solutions of the differential equation. On what open interval(s) are both \(y_1(t) \) and \(y_2(t) \) solutions?
 - (c) Verify that the solutions \(y_1 \) and \(y_2 \) form a fundamental set of solutions. On what open interval(s)?
 - (d) Solve the initial value problem.

3. Solve the initial value problem \(y'' + 2y' + 2y = 0, \quad y(0) = 1, \quad y'(0) = -1. \)

4. Solve the initial value problem \(4y'' + 4y' + y = 0, \quad y(2) = -6, \quad y'(2) = 4. \)

5. Consider the initial value problem \(t^2 y'' + 9ty' + 16y = 0, \quad y(1) = -1, \quad y'(1) = 1. \)
 - (a) Determine on what open interval the solution \(y = \phi(t) \) of the initial value problem is defined.
 - (b) Verify that \(y_1(t) = t^{-4} \) is a solution of the differential equation. Then find another solution \(y_2(t) \), not equal to a constant multiple of \(y_1(t) \), by using the method of reduction of order.
 - (c) Verify that solutions \(y_1 \) and \(y_2 \) form a fundamental set of solutions. On what open interval(s)?
 - (d) Solve the initial value problem.