1. To verify that a given function is a solution, we check that it is continuous, we differentiate it, substitute it into the differential equation and see if the differential equation is satisfied. We also substitute \(t = t_0 \) into the function see if it satisfies the initial condition.

Note that \(e^{t^2} \) and \(\int_0^t e^{-u^2} \, du \) are both continuous functions of \(t \), so \(y(t) \) is continuous (for all \(t, -\infty < t < \infty \)). Differentiating the expression for \(y(t) \), using the Product Rule and the Fundamental Theorem of Calculus, we get

\[
y'(t) = 2te^{t^2} \int_0^t e^{-u^2} \, du + e^{t^2} e^{-t^2} + 2te^{t^2}
\]

\[
= 2t \left(e^{t^2} \int_0^t e^{-u^2} \, du + e^{t^2} \right) + 1
\]

\[
= 2ty(t) + 1,
\]

which verifies that the differential equation \(y' - 2ty = 1 \) is satisfied.

Evaluating the expression at \(t = 0 \) gives

\[
y(0) = e^0 \cdot 0 + e^0 = 1,
\]

which verifies that the initial condition is satisfied.

2. (a) \(y' + 2y = te^{-2t}, \quad y(1) = 0. \)

The first-order differential equation is linear. The integrating factor \(\mu(t) \) needs to satisfy \(\mu' = 2\mu \), from which we recognize the solution is \(\mu(t) = e^{\int 2 \, dx} = e^{2t+k} \), \(k \) arbitrary. We can take \(k = 1 \) here, and multiply the DE by the integrating factor

\[
\mu(t) = e^{2t}
\]

to get

\[
e^{2t}y' + 2e^{2t}y = t,
\]

\[
\left(e^{2t}y \right)' = t,
\]

\[
e^{2t}y = \int t \, dt,
\]

\[
e^{2t}y = \frac{1}{2}t^2 + c,
\]

where \(c \) is an arbitrary constant.

Multiply by \(e^{-2t} \) to get the general solution

\[
y(t) = \frac{1}{2}t^2 e^{-2t} + c e^{-2t},
\]

and now use the initial condition at \(t = 1, y(1) = 0 \) to get

\[
\frac{1}{2}e^{-2} + c e^{-2} = 0
\]

1
and solve for

\[c = -\frac{1}{2}. \]

The solution to the IVP is

\[y(t) = \frac{1}{2} t^2 e^{-t^2} - \frac{1}{2} e^{-2t}, \]

which is defined in the interval

\[-\infty < t < \infty. \]

(b) \(y' + (2/x)y = x^{-2}, \ x > 0. \)

This is a linear first-order equation. The integrating factor \(\mu(x) \) needs to satisfy \(\mu' = (2/x)\mu \), which we solve by writing \(d\mu/\mu = 2/x \) and integrating to get \(\ln|\mu| = 2\ln x + k \) \((x > 0) \), \(\mu(x) = e^{\int (2/x)dx} = e^{2\ln x + k} = e^k x^2 \), \(k \) arbitrary. We can take \(k = 0 \) here and an integrating factor is

\[\mu(x) = x^2. \]

Multiply the differential equation by \(\mu(x) = x^2 \) and get

\[x^2 y' + 2xy = 1, \]

\[(x^2 y)' = 1, \]

\[x^2 y = \int 1 \, dx, \]

\[x^2 y = x + c, \]

where \(c \) is an arbitrary constant.

Divide by \(x^2 \) to get the general solution:

\[y(t) = \frac{1}{x} + \frac{c}{x^2}, \quad x > 0, \]

where \(c \) is an arbitrary constant.

(c) \(y' = x^2/y(1 + x^3). \)

This is a nonlinear first-order equation, and it is separable. Write the DE as

\[dy/dx = x^2/y(1 + x^3) \]

and separate variables to get

\[y \, dy = x^2 \frac{dx}{1 + x^3}. \]

Integrate both sides to get

\[\frac{1}{2} y^2 = \frac{1}{3} \ln|1 + x^3| + c, \]

and solve for \(y \) to get

\[y(x) = \pm \sqrt{\frac{2}{3} \ln|1 + x^3| + c}, \]

where \(c \) is an arbitrary constant.

(d) \(y' = (1 - 2x)y^2, \ y(0) = -1/6. \)

The first-order equation is nonlinear and separable. Write it as

\[-y^{-2} \, dy = (2x - 1) \, dx, \]
then integrate to obtain

\[y^{-1} = x^2 - x + c, \]

where \(c \) is an arbitrary constant. Substituting \(x = 0 \) and \(y = -1/6 \), we find that

\[c = -6, \]

then \(y^{-1} = x^2 - x - 6 \), or in explicit form

\[y(x) = \frac{1}{x^2 - x - 6}. \]

Noting that \(x^2 - x - 6 = (x + 2)(x - 3) \), we see that for \(y(x) \) to be defined, we need \(x \neq -2 \) and \(x \neq 3 \). Then \(y(x) \) might be defined for \(-\infty < x < -2 \) or \(-2 < x < 3 \) or \(3 < x < \infty \). The interval in which the solution is defined must contain \(x = 0 \), so the interval is

\[-2 < x < 3. \]

3. \(ay' + by = 0 \).

Letting \(y = e^{rt} \), we calculate \(y' = re^{rt} \) and substituting into the differential equation gives

\[a(re^{rt}) + b(e^{rt}) = 0. \]

Dividing by \(e^{rt} \) (which is never zero) gives the algebraic equation

\[ar + b = 0. \]

This is easily solved to give

\[r = -\frac{b}{a}. \]

Now verify that \(y(t) = e^{-(b/a)t} \) is indeed a solution, by substituting it into the differential equation:

\[a \left(-\frac{b}{a} e^{-bt/a} \right) + b \left(e^{-bt/a} \right) = -be^{-bt/a} + be^{-bt/a} = 0, \]

as is required for a solution.

4. Let \(M(t) \) be the amount of drug, in mg, present in the bloodstream at time \(t \) in hr.

(a) The drug enters the bloodstream at a rate in of

\[(5 \text{ mg/cm}^3)(100 \text{ cm}^3/\text{hr}) = 500 \text{ mg/hr}, \]

and leaves the bloodstream at a rate out (the amount present at any time \(t \) is \(M(t) \) mg) of

\[(0.4 \text{ hr}^{-1})(M \text{ mg}) = 0.4 M \text{ mg/hr}. \]

Therefore the total rate the drug enters the bloodstream is given by the differential equation

\[\frac{dM}{dt} = \text{rate in} - \text{rate out} \]

\[= 500 - 0.4 M, \]
and the units are \(\text{mg/hr} \).

(b) We interpret “after a long time” as the limiting value of \(M(t) \) when \(t \to \infty \). This can be found \textit{without} explicitly solving for \(M(t) \) by looking for an \textit{equilibrium solution}. Setting \(dM/dt = 0 \) in the differential equation and solving for \(M \) gives

\[
M = \frac{500}{0.4} = 1250 \text{ mg}.
\]

Alternatively, you could do part (c) first, then take the limit as \(t \to \infty \).

(c) We assume that when the intravenous unit is first hooked up to the patient, there is no drug in the bloodstream, so the initial condition is

\[
M(0) = 0.
\]

To solve the DE, we recognize it as a linear first-order equation and write it as

\[
M' + 0.4M = 500.
\]

An integrating factor is

\[
\mu(t) = e^{0.4t},
\]

multiplying the DE by this integrating factor gives

\[
(e^{0.4t}M)' = 500e^{0.4t},
\]

then integrating gives

\[
e^{0.4t}M = 1250e^{0.4t} + c,
\]

where \(c \) is an arbitrary constant. Using the initial condition \(M(0) = 0 \) we get \(c = -1250 \) (notice it is a little faster to find \(c \) if we don’t solve for \(M \) first) and so the solution of the initial value problem, which is the amount, in mg, of the drug that is present in the bloodstream at time \(t \), in hrs:

\[
M(t) = 1250 - 1250e^{-0.4t}.
\]

Notice that we have \(\lim_{t \to \infty} M(t) = 1250 \), as predicted in part (b).