MATH 200
Marked Homework 7
Due Friday 2016 March 11 at the beginning of class

Homework submitted late will not be marked.

1. Estimate the value of \(\int \int_R (1 - xy^2) \, dA \), where \(R = [0, 4] \times [-1, 2] \), by evaluating a Riemann sum with \(m = 2 \) subrectangles in the \(x \)-direction and \(n = 3 \) subrectangles in the \(y \)-direction. Take sample points to be the lower right corners of the subrectangles. You can use a calculator.

2. Prove that the hyperbolic paraboloid \(z = 3y^2 - x^2 + 2 \) lies above the \(xy \)-plane for all \((x, y)\) belonging to \(R = [-1, 1] \times [1, 2] \), and determine the volume of the solid that lies under the hyperbolic paraboloid and above \(R \).

3. Find the average value of \(f(x, y) = e^y \sqrt{x + e^y} \), over the rectangle \(R \) that has vertices \((0, 0), (4, 0), (4, 1), (0, 1)\).

4. Find the volume of the bounded solid enclosed by the elliptic paraboloid \(z = x^2 + 3y^2 \), and the planes \(x = 0, y = 1, x = y, z = 0 \).

5. Find the volume of the bounded solid enclosed by the parabolic cylinder \(y = x^2 \), and the planes \(z = 3y \) and \(z = 2 + y \).

6. Evaluate
\[
\int_0^1 \int_x^1 e^{x/y} \, dy \, dx.
\]