Midterm review session

Monday 6:00-8:00 pm TBLC 182.
Section 003: Review session Friday 5:30 - 7:30 pm HENN 205

Last time: Geometric problems with derivatives...
Important fact (NEVER FORGET)

\(f'(a) \) is the slope of the tangent line of the graph of \(f(x) \) at \((a, f(a))\).

equation of tangent line: \[y - f(a) = f'(a)(x-a) \]

Also: RECALL

\(f'(a) \): instantaneous rate of change of \(f(x) \) at \(x=a \).

If \(f(t) \) is temperature at time \(t \)
\(f'(t) \) is instantaneous rate of change of temperature at time \(t \)

Differentiability (NOT in the midterm).

\(f(x) \) is differentiable at \(x=a \) when
\[f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \] exists and is a number.
FACT: If \(f(x) \) is differentiable at \(x = a \) then \(f(x) \) is continuous at \(x = a \).

\[\text{Diff} \implies \text{Cont.} \]

We saw: \(f(x) = |x| \) is not differentiable at \(x = 0 \).

FACT: If the graph of \(f(x) \) has a corner \((\forall)\) or \((\wedge)\) or a cusp \((\vee)\) or a "cor-cusp" \((\wedge)\) or \((\forall)\) at \(x = a \) then \(f(x) \) is not differentiable at \(x = a \).

Example:

- At \(x = -3 \), \(f(x) \) is not dif. because it is not cont.
- At \(x = 1 \), \(f(x) \) is not dif. because it has a cor-cusp \(\forall \).
- At \(x = 1.5 \), \(f(x) \) is not dif. because it has a corner \(\forall \).
- At \(x = 3 \), \(f(x) \) is not dif. because it has a cor-cusp \(\wedge \).
- At \(x = 4 \), \(f(x) \) is not differentiable because it has a cor-cusp \(\wedge \).
Exponential functions

We talked about x^2 a lot...
Now it's time to introduce some new functions...

$f(x) = 2^x$

What is this function?

Table of values

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$2^1 = 2$</td>
</tr>
<tr>
<td>2</td>
<td>$2^2 = 4$</td>
</tr>
<tr>
<td>3</td>
<td>$2^3 = 8$</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>0</td>
<td>$2^0 = 1$</td>
</tr>
<tr>
<td>-1</td>
<td>$2^{-1} = \frac{1}{2}$</td>
</tr>
<tr>
<td>-2</td>
<td>$2^{-2} = \frac{1}{4}$</td>
</tr>
</tbody>
</table>

Plot them in a graph:

Graph of $f(x) = 2^x$
Observations from this graph:

Domain of $f(x) = 2^x$: All real numbers
$2^x > 0$ for all x
2^x is NEVER zero (NO x-intercepts!!!)
But it gets closer and closer to 0 as x becomes more and more negative
2^x is becoming bigger and bigger as x becomes bigger and bigger.

y-intercept: $(0, 2^0) = (0, 1)$.
$f(x) = 2^x$ is one to one.

We can also talk about $y(x) = 3^x$, 4^x, 5^x, ...

Q. Solve the equation $2^{x+1} = 1$.

We need $x + 1 = 0$ (Recall $2^0 = 1$)

\[\begin{align*}
x &= -1
\end{align*}\]

Q. Solve the equation $2^x = 4$.
We $2^x = 4$ is $2^x = 2^2$ so $x = 2$

Algebraic properties:

\[\begin{align*}
2^0 &= 1 \\
2^a \cdot 2^b &= 2^{a+b} \\
2^{-a} &= \frac{1}{2^a} \\
(2^a)^b &= 2^{ab}
\end{align*}\]
A. Solve the equation

\[4^{-2x} = \sqrt[3]{4} \]

\[\Rightarrow \text{ We write } \quad 4^{-2x} = 4^{\frac{2}{3}} \]

\[4^{-2x} \cdot 4^{-\frac{2}{3}} = 1 \]

\[4^{-2x - \frac{2}{3}} = 1 \]

\[-2x - \frac{1}{3} = 0 \]

\[-2x = \frac{1}{3} \]

\[x = -\frac{1}{6} \]