Monday October 3

Last time: Computing limits from the formula of a function $f(x)$

- If $f(x)$ exists then
 - $\lim_{x \to a} f(x) = f(a)$

- If f is not defined at $x = a$
 - $\lim_{x \to a} f(x) = \frac{0}{0}

- If $\frac{f(a)}{f(x)} = \frac{1}{0}$
 - Then the limit is $+\infty$ if $f(x) > 0$ close to a
 - $-\infty$ if $f(x) < 0$ close to a.

Continuity

A function $f(x)$ is continuous if you can draw its graph without lifting your pencil.

- continuous

Not continuous.

Here I lifted the pencil.
A function \(f(x) \) is continuous at \(x = a \) if close to \(x = a \), I can draw the graph of \(f(x) \) without lifting the pencil.

In other words, the function "doesn't jump" at \(x = a \).

\[
\begin{align*}
\text{Continuous at } x = 2 \\
\text{not} \\
\text{Continuous at } x = -1
\end{align*}
\]

Mathematically,

A function \(f(x) \) is continuous at \(x = a \) if

- \(f(a) \) is defined, \(f \) is defined at \(a \).

- \(\lim_{x \to a} f(x) \) exists

- \(\lim_{x \to a} f(x) = f(a) \).
Question: Can a function be defined at a, if \(\lim_{x \to a} f(x) \) exists but \(\lim_{x \to a} f(x) \neq f(a) \)?

\[\Rightarrow \text{YES} \]

Here when $a = 1$ we have

\[f(1) = 2 \quad (\text{exists}) \]

But \(\lim_{x \to 1} f(x) = 1 \neq f(1) = 2 \).

This function is \textbf{NOT} continuous at $x = 1$.

\[\text{Continuous functions - examples} \]

\[f(x) = ax^2 + bx + c \]

\[f(x) = \frac{1}{x^2} \]
linear functions: \(f(x) = mx + b \)

Moreover, products and quotients of continuous functions are also continuous (at the points they are defined)

That's why on Friday we could plug in \(a \) in \(f(x) \) when \(f(a) \) existed and compute

\[
\lim_{x \to a} f(x) = f(a)
\]

Our functions were continuous.
• Let \(f(x) = \begin{cases} x^2, & x \geq 0 \\ x, & x < 0 \end{cases} \)

Is \(f(x) \) continuous?

⇒ We have to check that \(f(x) \) is continuous at every \(x = a \).

Two ways:

1. From the graph

 Graph:

 We can draw this graph without lifting the pencil.

 Hence, \(f(x) \) is a continuous function.

2. From the formula:

 \(f(x) \) has a different formula when \(x \geq 0 \) (\(f(x) = x^2 \)) and when \(x < 0 \) (\(f(x) = x \)).

 We take three cases:

 - \(x = a > 0 \)
 - \(x = a < 0 \)
 - \(x = 0 \)
When \(x = a > 0 \) we want to check if \(f(x) \) is continuous at \(a > 0 \).
To do so, notice that we can find a "small" interval close to \(a \) where all \(x > 0 \) and \(f(x) = x^2 \).
We know that quadratics are continuous functions.
Hence, \(f(x) \) is continuous at \(x = a > 0 \).

When \(x = a < 0 \) we will see that \(f(x) \) is continuous at \(a < 0 \).
Notice that we can find a small interval close to \(a < 0 \) where \(x < 0 \)
and \(f(x) = x \).
We know that linear functions are continuous.
Hence \(f(x) \) is continuous when \(a < 0 \).

When \(x = 0 \).
We want to see that \(f(x) \) is continuous at \(x = 0 \).

We have to verify 3 conditions:

(i) \(f(0) \) is defined.
(ii) \(\lim_{{x \to 0^-}} f(x) = \lim_{{x \to 0^+}} f(x) = f(0) \).
(iii) \(\lim_{{x \to 0}} f(x) = f(0) \).
For (i) we compute \(f(0) = 0^2 = 0 \) \(\square \)

For (ii) \(\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} x = 0 \) \(\square \)

plugging it in:

Here \(x < 0 \), this is why I chose the formula \(f(x) = x \).

\(\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^2 = 0^2 = 0 \) \(\square \)

Here \(x > 0 \), hence \(f(x) = x^2 \).

Therefore, \(\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) \) \(= \lim_{x \to 0} f(x) \)

\(= f(0) = 0 \)

Condition (iii) is also verified \(\square \).

Thus, \(f(x) \) is continuous at \(x = 0 \).